Several single crystals and powder samples of ammonium tartrate, recently proposed as a possible ESR dosimeter, have been X-irradiated with different doses. The total radical concentration has been determined by quantitative cw ESR, by comparison with a standard. The samples have been studied by electron spin echo spectroscopy. The two-pulse echo decay has been obtained and simulated by a single exponential function for different values of the microwave power of the pulses and for different pulse lengths. The dependence of the phase memory time TM on the microwave power has been exploited to get information on the contribution of the instantaneous diffusion to spin dephasing. At room temperature in the range of radical concentrations of 1E18-1E19 spins/cm3 the instantaneous diffusion is the dominant spin dephasing mechanism. The linear dependence of the instantaneous diffusion on the total concentration of the radicals is in agreement with the theory. From the latter result we conclude that the average radical-radical distance corresponds to a random distribution of the radicals in the matrix. A simple method of measuring the radical concentration by the ESE decays in powder samples of irradiated ammonium tartrate is described.

Spin concentration in a possible ESR dosimeter: An electron spin echo study on X-irradiated ammonium tartrate

BRUSTOLON, MARINA ROSA;ZOLEO, ALFONSO;
1999

Abstract

Several single crystals and powder samples of ammonium tartrate, recently proposed as a possible ESR dosimeter, have been X-irradiated with different doses. The total radical concentration has been determined by quantitative cw ESR, by comparison with a standard. The samples have been studied by electron spin echo spectroscopy. The two-pulse echo decay has been obtained and simulated by a single exponential function for different values of the microwave power of the pulses and for different pulse lengths. The dependence of the phase memory time TM on the microwave power has been exploited to get information on the contribution of the instantaneous diffusion to spin dephasing. At room temperature in the range of radical concentrations of 1E18-1E19 spins/cm3 the instantaneous diffusion is the dominant spin dephasing mechanism. The linear dependence of the instantaneous diffusion on the total concentration of the radicals is in agreement with the theory. From the latter result we conclude that the average radical-radical distance corresponds to a random distribution of the radicals in the matrix. A simple method of measuring the radical concentration by the ESE decays in powder samples of irradiated ammonium tartrate is described.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2464409
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact