Let Ω be an open connected subset of R^n for which the imbedding of the Sobolev space W^{1,2}(Ω) into the space L^2(Ω) is compact. We consider the Neumann eigenvalue problem for the Laplace operator in the open subset φ(Ω) of R^n, where φ is a Lipschitz continuous homeomorphism of Ω onto φ(Ω). Then we prove a result of real analytic dependence for symmetric functions of the eigenvalues upon variation of φ.
A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Neumann problem for the Laplace operator
LAMBERTI, PIER DOMENICO;LANZA DE CRISTOFORIS, MASSIMO
2007
Abstract
Let Ω be an open connected subset of R^n for which the imbedding of the Sobolev space W^{1,2}(Ω) into the space L^2(Ω) is compact. We consider the Neumann eigenvalue problem for the Laplace operator in the open subset φ(Ω) of R^n, where φ is a Lipschitz continuous homeomorphism of Ω onto φ(Ω). Then we prove a result of real analytic dependence for symmetric functions of the eigenvalues upon variation of φ.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Lanza310307.pdf
accesso aperto
Descrizione: pdf
Tipologia:
Preprint (submitted version)
Licenza:
Accesso libero
Dimensione
180.02 kB
Formato
Adobe PDF
|
180.02 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.