This paper presents a novel approach to the assessment of the manoeuvrability of vehicles which is not based on the simulation of open-loop manoeuvres, nor does it rely on the modelling of the driver as a control system. Instead, the essence of the method is the solution of a two-point optimal control boundary value problem, in which a vehicle, subject to physical constraints like tyre adherence and road borders, among others, is required to go between given initial and final positions as fast as possible. The control inputs - i.e., the driver's actions - that make the vehicle move between the two states in the most efficient way are found as a part of the solution procedure and represent the actions of a sort of ideal, perfect driver. The resulting motion is called the optimal manoeuvre and, besides being the most efficient way that the given vehicle has for travelling between the two points according to the chosen optimal criterion, may be taken as a reference for meaningful comparisons with other vehicles. The value of the penalty function, used to define the optimal condition occurring at the optimal manoeuvre, may be taken as a measure of manoeuvrability or handling. With this approach the manoeuvrability properties are established as intrinsic to the vehicle, being defined with respect to an ideal perfect driver. Some possible forms of the penalty function, which means slightly different concepts of manoeuvrability and handling, are discussed. In the end, the case of motorcycles and some examples of optimal manoeuvres are given.

A General Method for the Evaluation of Vehicle Manoeuvrability with Special Emphasis on Motorcycles

COSSALTER, VITTORE;LOT, ROBERTO;
1999

Abstract

This paper presents a novel approach to the assessment of the manoeuvrability of vehicles which is not based on the simulation of open-loop manoeuvres, nor does it rely on the modelling of the driver as a control system. Instead, the essence of the method is the solution of a two-point optimal control boundary value problem, in which a vehicle, subject to physical constraints like tyre adherence and road borders, among others, is required to go between given initial and final positions as fast as possible. The control inputs - i.e., the driver's actions - that make the vehicle move between the two states in the most efficient way are found as a part of the solution procedure and represent the actions of a sort of ideal, perfect driver. The resulting motion is called the optimal manoeuvre and, besides being the most efficient way that the given vehicle has for travelling between the two points according to the chosen optimal criterion, may be taken as a reference for meaningful comparisons with other vehicles. The value of the penalty function, used to define the optimal condition occurring at the optimal manoeuvre, may be taken as a measure of manoeuvrability or handling. With this approach the manoeuvrability properties are established as intrinsic to the vehicle, being defined with respect to an ideal perfect driver. Some possible forms of the penalty function, which means slightly different concepts of manoeuvrability and handling, are discussed. In the end, the case of motorcycles and some examples of optimal manoeuvres are given.
1999
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2465975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 112
  • ???jsp.display-item.citation.isi??? 90
social impact