In recent years, mitochondria have emerged as important targets of agonist-dependent increases in cytosolic Ca(2+) concentration. Here, we analyzed the significance of Ca(2+) signals for the modulation of organelle function by directly measuring mitochondrial and cytosolic ATP levels ([ATP](m) and [ATP](c), respectively) with specifically targeted chimeras of the ATP-dependent photoprotein luciferase. In both HeLa cells and primary cultures of skeletal myotubes, stimulation with agonists evoking cytosolic and mitochondrial Ca(2+) signals caused increases in [ATP](m) and [ATP](c) that depended on two parameters: (i) the amplitude of the Ca(2+) rise in the mitochondrial matrix, and (ii) the availability of mitochondrial substrates. Moreover, the Ca(2+) elevation induced a long-lasting priming that persisted long after agonist washout and caused a major increase in [ATP](m) upon addition of oxidative substrates. These results demonstrate a direct role of mitochondrial Ca(2+) in driving ATP production and unravel a form of cellular memory that allows a prolonged metabolic activation in stimulated cells.

Regulation of mitochondrial ATP syntesis by calcium: evidence for a long-term metabolic priming.

RIZZUTO, ROSARIO
1999

Abstract

In recent years, mitochondria have emerged as important targets of agonist-dependent increases in cytosolic Ca(2+) concentration. Here, we analyzed the significance of Ca(2+) signals for the modulation of organelle function by directly measuring mitochondrial and cytosolic ATP levels ([ATP](m) and [ATP](c), respectively) with specifically targeted chimeras of the ATP-dependent photoprotein luciferase. In both HeLa cells and primary cultures of skeletal myotubes, stimulation with agonists evoking cytosolic and mitochondrial Ca(2+) signals caused increases in [ATP](m) and [ATP](c) that depended on two parameters: (i) the amplitude of the Ca(2+) rise in the mitochondrial matrix, and (ii) the availability of mitochondrial substrates. Moreover, the Ca(2+) elevation induced a long-lasting priming that persisted long after agonist washout and caused a major increase in [ATP](m) upon addition of oxidative substrates. These results demonstrate a direct role of mitochondrial Ca(2+) in driving ATP production and unravel a form of cellular memory that allows a prolonged metabolic activation in stimulated cells.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2469311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact