A major computational issue in the Finite Element (FE) integration of coupled consolidation equations is the repeated solution in time of the resulting discretized indefinite system. Because of ill-conditioning, the iterative solution, which is recommended in large size 3D settings, requires the computation of a suitable preconditioner to guarantee convergence. In this paper the coupled system is solved by a Krylov subspace method preconditioned by a Relaxed Mixed Constraint Preconditioner (RMCP) which is a generalization based on a parameter ω of the Mixed Constraint Preconditioner (MCP) developed in [7]. Choice of optimal ω is driven by the spectral distribution of suitable symmetric positive definite (SPD) matrices. Numerical tests performed on realistic 3D problems reveal that RMCP accelerates Krylov subspace solvers by a factor up to three with respect to MCP

RMCP: Relaxed Mixed Constraint Preconditioners for saddle point linear systems arising in geomechanics

BERGAMASCHI, LUCA;MARTINEZ CALOMARDO, ANGELES
2012

Abstract

A major computational issue in the Finite Element (FE) integration of coupled consolidation equations is the repeated solution in time of the resulting discretized indefinite system. Because of ill-conditioning, the iterative solution, which is recommended in large size 3D settings, requires the computation of a suitable preconditioner to guarantee convergence. In this paper the coupled system is solved by a Krylov subspace method preconditioned by a Relaxed Mixed Constraint Preconditioner (RMCP) which is a generalization based on a parameter ω of the Mixed Constraint Preconditioner (MCP) developed in [7]. Choice of optimal ω is driven by the spectral distribution of suitable symmetric positive definite (SPD) matrices. Numerical tests performed on realistic 3D problems reveal that RMCP accelerates Krylov subspace solvers by a factor up to three with respect to MCP
File in questo prodotto:
File Dimensione Formato  
cmame.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 720.84 kB
Formato Adobe PDF
720.84 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2526126
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact