Energy Harvesting Wireless Sensor Devices are increasingly being considered for deployment in sensor networks, due to their demonstrated advantages of prolonged lifetime and autonomous operation. However, irreversible degradation mechanisms jeopardize battery lifetime, calling for intelligent management policies, which minimize the impact of these phenomena while guaranteeing a minimum Quality of Service (QoS). This paper explores a mathematical characterization of these devices, focusing on the interplay between the battery discharge policy and the irreversible degradation of the storage capacity. We propose a stochastic Markov chain framework, suitable for policy optimization, which captures the degradation status of the battery. We present a general result of Markov chains, which exploits the timescale separation between the communication time-slot of the device and the battery degradation process, and enables an efficient optimization. We show that this model fits well the behavior of real batteries for what concerns their storage capacity degradation over time. We demonstrate that a degradation-aware policy significantly improves the lifetime of the sensor compared to "greedy" policies, while guaranteeing the minimum required QoS. Finally, a simple heuristic policy, which never discharges the battery below a given threshold, is shown to achieve near-optimal performance in terms of battery lifetime.

Energy Management Policies for Harvesting-Based Wireless Sensor Devices with Battery Degradation

BADIA, LEONARDO;CARLI, RUGGERO;CORRADINI, LUCA;ZORZI, MICHELE
2013

Abstract

Energy Harvesting Wireless Sensor Devices are increasingly being considered for deployment in sensor networks, due to their demonstrated advantages of prolonged lifetime and autonomous operation. However, irreversible degradation mechanisms jeopardize battery lifetime, calling for intelligent management policies, which minimize the impact of these phenomena while guaranteeing a minimum Quality of Service (QoS). This paper explores a mathematical characterization of these devices, focusing on the interplay between the battery discharge policy and the irreversible degradation of the storage capacity. We propose a stochastic Markov chain framework, suitable for policy optimization, which captures the degradation status of the battery. We present a general result of Markov chains, which exploits the timescale separation between the communication time-slot of the device and the battery degradation process, and enables an efficient optimization. We show that this model fits well the behavior of real batteries for what concerns their storage capacity degradation over time. We demonstrate that a degradation-aware policy significantly improves the lifetime of the sensor compared to "greedy" policies, while guaranteeing the minimum required QoS. Finally, a simple heuristic policy, which never discharges the battery below a given threshold, is shown to achieve near-optimal performance in terms of battery lifetime.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2771278
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 62
social impact