In large ground telescopes the Adaptive Optics (AO) system aims at compensating the atmosphere effect on telescope measurements, and, the use of optimal filtering is fundamental for such task. This work is motivated by two important characteristics of new AO systems: on one hand, because of the request of very high measurement resolutions, the size of new telescopes, and of their sensors, is quickly increasing in the last decades, thus imposing to the AO systems the analysis of larger amount of data. On the other hand, the optimal filter has to be periodically updated according to temporal changes in atmosphere characteristics. Hence, it is of fundamental importance the use of computationally efficient algorithms for the update of the optimal filter gain. This paper proposes some changes to a recently presented method for the efficient computation, in the frequency domain, of the Kalman gain for large AO systems [15]. The proposed changes, which mainly aim at correcting some issues due to the conversion spatial-frequency domain, and viceversa, allow to compute a better approximation of the optimal Kalman gain, and, consequently, significantly improve the performance of the AO system.

On the computation of the Kalman gain in large Adaptive Optics systems

BEGHI, ALESSANDRO;CENEDESE, ANGELO;MASIERO, ANDREA
2013

Abstract

In large ground telescopes the Adaptive Optics (AO) system aims at compensating the atmosphere effect on telescope measurements, and, the use of optimal filtering is fundamental for such task. This work is motivated by two important characteristics of new AO systems: on one hand, because of the request of very high measurement resolutions, the size of new telescopes, and of their sensors, is quickly increasing in the last decades, thus imposing to the AO systems the analysis of larger amount of data. On the other hand, the optimal filter has to be periodically updated according to temporal changes in atmosphere characteristics. Hence, it is of fundamental importance the use of computationally efficient algorithms for the update of the optimal filter gain. This paper proposes some changes to a recently presented method for the efficient computation, in the frequency domain, of the Kalman gain for large AO systems [15]. The proposed changes, which mainly aim at correcting some issues due to the conversion spatial-frequency domain, and viceversa, allow to compute a better approximation of the optimal Kalman gain, and, consequently, significantly improve the performance of the AO system.
2013
Proceedings of the 2013 Mediterranean Conference on Control
9781479909971
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2795760
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact