The purpose of this paper is to investigate the role that the so-called constrained generalized Riccati equation plays within the context of continuous-time singular linear–quadratic (LQ) optimal control. This equation has been defined following the analogy with the discrete-time setting. However, while in the discrete-time case the connections between this equation and the linear–quadratic optimal control problem have been thoroughly investigated, to date very little is known on these connections in the continuous-time setting. This note addresses this point. We show, in particular, that when the continuous-time constrained generalized Riccati equation admits a solution, the corresponding linear–quadratic problem admits an impulse-free optimal control. We also address the corresponding infinite-horizon LQ problem for which we establish a similar result under the additional constraint that there exists a control input for which the cost index is finite.

The generalized continuous algebraic Riccati equation and impulse-free continuous-time LQ optimal control

FERRANTE, AUGUSTO;
2014

Abstract

The purpose of this paper is to investigate the role that the so-called constrained generalized Riccati equation plays within the context of continuous-time singular linear–quadratic (LQ) optimal control. This equation has been defined following the analogy with the discrete-time setting. However, while in the discrete-time case the connections between this equation and the linear–quadratic optimal control problem have been thoroughly investigated, to date very little is known on these connections in the continuous-time setting. This note addresses this point. We show, in particular, that when the continuous-time constrained generalized Riccati equation admits a solution, the corresponding linear–quadratic problem admits an impulse-free optimal control. We also address the corresponding infinite-horizon LQ problem for which we establish a similar result under the additional constraint that there exists a control input for which the cost index is finite.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2823881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
  • OpenAlex ND
social impact