Introduction: The discovery of receptor-receptor interactions (RRIs) in the early 1980s provided evidence that G-protein-coupled receptors (GPCRs) operate not only as monomers but also as heteromers, in which integration of the incoming signals takes place already at the plasma membrane level through allosteric RRIs. These integrative mechanisms give sophisticated dynamics to the structure and function of these receptor assemblies in terms of modulation of recognition, G-protein signaling and selectivity and switching to β-arrestin signaling. Areas covered: The present review briefly describes the concept of direct RRI and the available data on the mechanisms of oligomer formation. Further, pharmacological data concerning the best characterized heteromers involving type A GPCRs will be analyzed to evaluate their profile as possible targets for the treatment of various diseases, in particular of impacting diseases of the CNS. Expert opinion: GPCR heteromers have the potential to open a completely new field for pharmacology with likely a major impact in molecular medicine. Novel pharmacological strategies for the treatment of several pathologies have already been proposed. However, several challenges still exist to accurately characterize the role of the identified heteroreceptor complexes in pathology and to develop heteromer-specific ligands capable of efficiently exploiting their pharmacological features.

G-protein-coupled receptor type A heteromers as an emerging therapeutic target.

GUIDOLIN, DIEGO;
2015

Abstract

Introduction: The discovery of receptor-receptor interactions (RRIs) in the early 1980s provided evidence that G-protein-coupled receptors (GPCRs) operate not only as monomers but also as heteromers, in which integration of the incoming signals takes place already at the plasma membrane level through allosteric RRIs. These integrative mechanisms give sophisticated dynamics to the structure and function of these receptor assemblies in terms of modulation of recognition, G-protein signaling and selectivity and switching to β-arrestin signaling. Areas covered: The present review briefly describes the concept of direct RRI and the available data on the mechanisms of oligomer formation. Further, pharmacological data concerning the best characterized heteromers involving type A GPCRs will be analyzed to evaluate their profile as possible targets for the treatment of various diseases, in particular of impacting diseases of the CNS. Expert opinion: GPCR heteromers have the potential to open a completely new field for pharmacology with likely a major impact in molecular medicine. Novel pharmacological strategies for the treatment of several pathologies have already been proposed. However, several challenges still exist to accurately characterize the role of the identified heteroreceptor complexes in pathology and to develop heteromer-specific ligands capable of efficiently exploiting their pharmacological features.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2996500
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 34
  • OpenAlex ND
social impact