The allosteric receptor-receptor interactions over the interfaces in heteroreceptor complexes have been explored and their biochemical, pharmacological and functional integrative implications in the Central Nervous System (CNS) described. GPCR interacting proteins participate in these complexes mainly through modulation of receptor-receptor interactions. Methodologies to study heteroreceptor complexes in living cells (FRET and BRET-based techniques) and in brain tissue (in situ proximity ligation assay) are briefly summarized. The physiological and pathological relevance of the allosteric receptor-receptor interactions in heteroreceptor complexes is emphasized and novel strategies for treatment of mental and neurological disease are developed based on this new biological principle of integration. The molecular basis of learning and memory is proposed to be based on the reorganization of the homo- and heteroreceptor complexes in the postjunctional membrane of synapses leading also to changes in the prejunctional receptor complexes to facilitate the pattern of transmitter release to be learned. Long-term memory may be created by the transformation of parts of the heteroreceptor complexes into unique transcription factors which can lead to the formation of specific adapter proteins which can consolidate the heteroreceptor complexes into long-lived complexes with conserved allosteric receptor-receptor interactions.

Receptor-receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory

GUIDOLIN, DIEGO;
2014

Abstract

The allosteric receptor-receptor interactions over the interfaces in heteroreceptor complexes have been explored and their biochemical, pharmacological and functional integrative implications in the Central Nervous System (CNS) described. GPCR interacting proteins participate in these complexes mainly through modulation of receptor-receptor interactions. Methodologies to study heteroreceptor complexes in living cells (FRET and BRET-based techniques) and in brain tissue (in situ proximity ligation assay) are briefly summarized. The physiological and pathological relevance of the allosteric receptor-receptor interactions in heteroreceptor complexes is emphasized and novel strategies for treatment of mental and neurological disease are developed based on this new biological principle of integration. The molecular basis of learning and memory is proposed to be based on the reorganization of the homo- and heteroreceptor complexes in the postjunctional membrane of synapses leading also to changes in the prejunctional receptor complexes to facilitate the pattern of transmitter release to be learned. Long-term memory may be created by the transformation of parts of the heteroreceptor complexes into unique transcription factors which can lead to the formation of specific adapter proteins which can consolidate the heteroreceptor complexes into long-lived complexes with conserved allosteric receptor-receptor interactions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3003500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact