The biological interaction between the jaw bones and dental implant is fundamental for the long-term success of dental implant placement. Nevertheless, the insufficient bone volume remains a major clinical problem, especially in case of immediate dental implant. Using a canine model, the present study proves the regenerative potential of adipose-derived stem cells (ADSCs) to repair peri-implant bone defects occurring in immediate dental implant placement. In six labradors, all mandibular premolars and the first molars were extracted bilaterally and three months later dental implants were installed with a marginal gap. The marginal defects were filled with hydroxyapatite (HA)-based scaffolds previously seeded with ADSCs. After one month of healing, specimens were prepared for histological and histomorphometric evaluations. Histological analyses of ground sections show that ADSCs significantly increase bone regeneration. Several new vessels, osteoblasts and new bone matrix were detected. By contrast, no inflammatory cells have been revealed. ADSCs could be used to accelerate bone healing in peri-implant defects in case of immediate dental implant placement.
Adipose-Derived Stem Cells as a Tool for Dental Implant Osseointegration: an Experimental Study in the Dog
BRESSAN, ERIBERTO;SIVOLELLA, STEFANO;GUAZZO, RICCARDO;SBRICOLI, LUCA;FERRONI, LETIZIA;GARDIN, CHIARA;ZAVAN, BARBARA
2015
Abstract
The biological interaction between the jaw bones and dental implant is fundamental for the long-term success of dental implant placement. Nevertheless, the insufficient bone volume remains a major clinical problem, especially in case of immediate dental implant. Using a canine model, the present study proves the regenerative potential of adipose-derived stem cells (ADSCs) to repair peri-implant bone defects occurring in immediate dental implant placement. In six labradors, all mandibular premolars and the first molars were extracted bilaterally and three months later dental implants were installed with a marginal gap. The marginal defects were filled with hydroxyapatite (HA)-based scaffolds previously seeded with ADSCs. After one month of healing, specimens were prepared for histological and histomorphometric evaluations. Histological analyses of ground sections show that ADSCs significantly increase bone regeneration. Several new vessels, osteoblasts and new bone matrix were detected. By contrast, no inflammatory cells have been revealed. ADSCs could be used to accelerate bone healing in peri-implant defects in case of immediate dental implant placement.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.