The seeds of many aquatic plants, as well as many propagulae and larvae, are buoyant and transported at the water surface. These particles are therefore subject to surface tension, which may enhance their capture by emergent vegetation through capillary attraction. In this work, we develop a semi-empirical model that predicts the probability that a floating particle is retained by plant stems and branches piercing the water surface, due to capillarity, against the drag force exerted by the flowing water. Specific laboratory experiments are also performed to calibrate and validate the model.

A semi-empirical model to predict the probability of capture of buoyant particles by a cylindrical collector through capillarity

PERUZZO, PAOLO;VIERO, DANIELE PIETRO;DEFINA, ANDREA
2016

Abstract

The seeds of many aquatic plants, as well as many propagulae and larvae, are buoyant and transported at the water surface. These particles are therefore subject to surface tension, which may enhance their capture by emergent vegetation through capillary attraction. In this work, we develop a semi-empirical model that predicts the probability that a floating particle is retained by plant stems and branches piercing the water surface, due to capillarity, against the drag force exerted by the flowing water. Specific laboratory experiments are also performed to calibrate and validate the model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3209925
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact