Residual stresses induced by welding processes significantly affect the engineering properties of structural components. If the toe region of a butt-welded joint is modeled as a sharp V-notch, the distribution of the residual stresses in that zone is asymptotic with a singularity degree which follows either the linear-elastic or the elastic-plastic solution, depending on aspects such as clamping conditions, welding parameters, material and dimension of plates. The intensity of the local residual stress fields is quantified by the Residual Notch Stress Intensity Factors (R-NSIFs), which can be used in principle to include the residual stress effect in the fatigue assessment of welded joints. Due to the need of extremely refined meshes and to the high computational resources required by non-linear transient analyses, the R-NSIFs have been calculated in literature only by means of 2D models. It is of interest to propose new coarse-mesh-based approaches which allow residual stresses to be calculated with less computational effort. This work is aimed to investigate the level of accuracy of the Peak Stress Method in the R-NSIFs evaluation.

On the use of the Peak Stress Method for the calculation of Residual Notch Stress Intensity Factors: a preliminary investigation

FERRO, PAOLO;COLUSSI, MARCO;MENEGHETTI, GIOVANNI;BERTO, FILIPPO;
2017

Abstract

Residual stresses induced by welding processes significantly affect the engineering properties of structural components. If the toe region of a butt-welded joint is modeled as a sharp V-notch, the distribution of the residual stresses in that zone is asymptotic with a singularity degree which follows either the linear-elastic or the elastic-plastic solution, depending on aspects such as clamping conditions, welding parameters, material and dimension of plates. The intensity of the local residual stress fields is quantified by the Residual Notch Stress Intensity Factors (R-NSIFs), which can be used in principle to include the residual stress effect in the fatigue assessment of welded joints. Due to the need of extremely refined meshes and to the high computational resources required by non-linear transient analyses, the R-NSIFs have been calculated in literature only by means of 2D models. It is of interest to propose new coarse-mesh-based approaches which allow residual stresses to be calculated with less computational effort. This work is aimed to investigate the level of accuracy of the Peak Stress Method in the R-NSIFs evaluation.
File in questo prodotto:
File Dimensione Formato  
On_the_use_of_the_Peak_Stress_Method.pdf

accesso aperto

Descrizione: paper
Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3219135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact