Thanks to the increasing popularity of 3D sensors, robotic vision has experienced huge improvements in a wide range of applications and systems in the last years. Besides the many benefits, this migration caused some incompatibilities with those systems that cannot be based on range sensors, like intelligent video surveillance systems, since the two kinds of sensor data lead to different representations of people and objects. This work goes in the direction of bridging the gap, and presents a novel re-identification system that takes advantage of multiple video flows in order to enhance the performance of a skeletal tracking algorithm, which is in turn exploited for driving the re-identification. A new, geometry-based method for joining together the detections provided by the skeletal tracker from multiple video flows is introduced, which is capable of dealing with many people in the scene, coping with the errors introduced in each view by the skeletal tracker. Such method has a high degree of generality, and can be applied to any kind of body pose estimation algorithm. The system was tested on a public dataset for video surveillance applications, demonstrating the improvements achieved by the multi-viewpoint approach in the accuracy of both body pose estimation and re-identification. The proposed approach was also compared with a skeletal tracking system working on 3D data: the comparison assessed the good performance level of the multi-viewpoint approach. This means that the lack of the rich information provided by 3D sensors can be compensated by the availability of more than one viewpoint.

A multi-viewpoint feature-based re-identification system driven by skeleton keypoints

GHIDONI, STEFANO;MUNARO, MATTEO
2017

Abstract

Thanks to the increasing popularity of 3D sensors, robotic vision has experienced huge improvements in a wide range of applications and systems in the last years. Besides the many benefits, this migration caused some incompatibilities with those systems that cannot be based on range sensors, like intelligent video surveillance systems, since the two kinds of sensor data lead to different representations of people and objects. This work goes in the direction of bridging the gap, and presents a novel re-identification system that takes advantage of multiple video flows in order to enhance the performance of a skeletal tracking algorithm, which is in turn exploited for driving the re-identification. A new, geometry-based method for joining together the detections provided by the skeletal tracker from multiple video flows is introduced, which is capable of dealing with many people in the scene, coping with the errors introduced in each view by the skeletal tracker. Such method has a high degree of generality, and can be applied to any kind of body pose estimation algorithm. The system was tested on a public dataset for video surveillance applications, demonstrating the improvements achieved by the multi-viewpoint approach in the accuracy of both body pose estimation and re-identification. The proposed approach was also compared with a skeletal tracking system working on 3D data: the comparison assessed the good performance level of the multi-viewpoint approach. This means that the lack of the rich information provided by 3D sensors can be compensated by the availability of more than one viewpoint.
File in questo prodotto:
File Dimensione Formato  
skel_tracker.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 3.47 MB
Formato Adobe PDF
3.47 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3228609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact