We define a homogeneous parabolic De Giorgi classes of order 2 which suits a mixed type class of evolution equations whose simplest example is $\mu (x) \frac{\partial u}{\partial t} - \Delta u = 0$ where $\mu$ can be positive, null and negative. The functions belonging to this class are local bounded and satisfy a Harnack type inequality. Interesting by-products are H\"older-continuity, at least in the ``evolutionary'' part of $\Omega$ and in particular in the interface $I$ where $\mu$ change sign, and an interesting maximum principle.

A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class

PARONETTO, FABIO
2017

Abstract

We define a homogeneous parabolic De Giorgi classes of order 2 which suits a mixed type class of evolution equations whose simplest example is $\mu (x) \frac{\partial u}{\partial t} - \Delta u = 0$ where $\mu$ can be positive, null and negative. The functions belonging to this class are local bounded and satisfy a Harnack type inequality. Interesting by-products are H\"older-continuity, at least in the ``evolutionary'' part of $\Omega$ and in particular in the interface $I$ where $\mu$ change sign, and an interesting maximum principle.
File in questo prodotto:
File Dimensione Formato  
article.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 415.35 kB
Formato Adobe PDF
415.35 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3234448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact