The cost-effectiveness of adopting agri-environmental measures (AEMs) in Europe, which combine agricultural productions with reduced N losses, is debated due to poorly targeted site-specific funding that is allocated regardless of local variability. An integrated DAYCENT model-GIS platform was developed combining pedo-climatic and agricultural systems information. The aim was to evaluate best strategies to improve N fluxes of agro-ecosystems within a perspective of sustainable intensification. Indicators of agronomic efficiency and environmental quality were considered. The results showed that agronomic benefits were observed with a continuous soil cover (conservation agriculture and cover crops), which enhanced nitrogen use efficiency (+17%) and crop yields (+34%), although in some cases these might be overestimated due to modelling limitations. An overall environmental improvement was found with continuous soil cover and long-term change from mineral to organic inputs (NLeach < 10 kg ha−1 a−1, N-N2O emissions < 1 kg ha−1 a−1, soil C stock > 45 Mg ha−1), which were effective in the sandy soils of western and eastern Veneto with low SOM, improving the soil-water balance and nutrients availability over time. Results suggest that AEM subsidies should be allocated at a site-specific level that includes pedo-climatic variability, following a result-oriented approach.

How to enhance crop production and nitrogen fluxes? A result-oriented scheme to evaluate best agri-environmental measures in Veneto Region, Italy

Dal Ferro, N.
;
Cocco, E.;Berti, A.;Morari, F.
2018

Abstract

The cost-effectiveness of adopting agri-environmental measures (AEMs) in Europe, which combine agricultural productions with reduced N losses, is debated due to poorly targeted site-specific funding that is allocated regardless of local variability. An integrated DAYCENT model-GIS platform was developed combining pedo-climatic and agricultural systems information. The aim was to evaluate best strategies to improve N fluxes of agro-ecosystems within a perspective of sustainable intensification. Indicators of agronomic efficiency and environmental quality were considered. The results showed that agronomic benefits were observed with a continuous soil cover (conservation agriculture and cover crops), which enhanced nitrogen use efficiency (+17%) and crop yields (+34%), although in some cases these might be overestimated due to modelling limitations. An overall environmental improvement was found with continuous soil cover and long-term change from mineral to organic inputs (NLeach < 10 kg ha−1 a−1, N-N2O emissions < 1 kg ha−1 a−1, soil C stock > 45 Mg ha−1), which were effective in the sandy soils of western and eastern Veneto with low SOM, improving the soil-water balance and nutrients availability over time. Results suggest that AEM subsidies should be allocated at a site-specific level that includes pedo-climatic variability, following a result-oriented approach.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3257505
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact