In this work, the possibility of shaping a glass-filled photosensitive polymer resin with Digital Light Processing (DLP) into a complex 3D structure and transforming it subsequently into a bioactive glass-ceramic scaffold was investigated. The influence of the printing conditions and the heat-treatment was studied using a 41 vol% glass-filled acrylated polymer resin. Scaffolds with designed architecture were turned into a wollastonite-diopside glass-ceramic at 1100 °C. They completely maintained their shape, exhibited no viscous flow and showed a homogenous linear shrinkage of around 25%. At 83 vol% porosity structures with Kelvin cell design exhibited a compressive strength exceeding 3 MPa, demonstrating that the material is suitable for the fabrication of bioceramic scaffolds for bone tissue engineering applications.

Digital light processing of wollastonite-diopside glass-ceramic complex structures

Schmidt, Johanna;Elsayed, Hamada;Bernardo, Enrico;Colombo, Paolo
2018

Abstract

In this work, the possibility of shaping a glass-filled photosensitive polymer resin with Digital Light Processing (DLP) into a complex 3D structure and transforming it subsequently into a bioactive glass-ceramic scaffold was investigated. The influence of the printing conditions and the heat-treatment was studied using a 41 vol% glass-filled acrylated polymer resin. Scaffolds with designed architecture were turned into a wollastonite-diopside glass-ceramic at 1100 °C. They completely maintained their shape, exhibited no viscous flow and showed a homogenous linear shrinkage of around 25%. At 83 vol% porosity structures with Kelvin cell design exhibited a compressive strength exceeding 3 MPa, demonstrating that the material is suitable for the fabrication of bioceramic scaffolds for bone tissue engineering applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3278846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 51
social impact