The gas transport parameters, diffusivity and air-filled porosity are crucial for soil aeration, microbial activity and greenhouse gas emission, and directly depend on soil structure. In this study, we analysed the effect of long-term tillage and irrigation practices on the surface structure of an arable soil in New Zealand. Our hypothesis was that topsoil structure would change under intensification of arable production, affecting gas exchange. Intact soil cores were collected from plots under intensive tillage (IT) and direct drill (DD), irrigated or rainfed. In total, 32 cores were scanned by X-ray computed tomography (CT) to derive the pore network >30 µm. The cores were then used to measure soil-gas diffusivity, air-permeability and air-filled porosity of pores close to the resolution of the X-ray CT scans, namely ≥30 µm. The gas measurements allow the calculation of pore-network connectivity and tortuosity parameters, which were compared with the CT-derived structural characteristics. Long-term irrigation had little effect on any of the parameters analysed. Total porosity tended to be lower under IT than DD, whereas the CT-derived porosity was comparable. Both the CT-derived mean pore diameter (MPD) and other morphological parameters, as well as gas measurement-derived parameters, highlighted a less developed structure under IT. The differences in the functional pore-network structure were attributed to SOC depletion and the mechanical disturbance through IT. Significant correlations between CT-derived parameters and functional gas transport parameters such as tortuosity and MPD were found, which suggest that X-ray CT could be useful in the prediction of gas transport.

Effect of long-term irrigation and tillage practices on X-ray CT and gas transport derived pore-network characteristics

Dal Ferro, Nicola
;
Zanini, Filippo;Carmignato, Simone;Morari, Francesco
2019

Abstract

The gas transport parameters, diffusivity and air-filled porosity are crucial for soil aeration, microbial activity and greenhouse gas emission, and directly depend on soil structure. In this study, we analysed the effect of long-term tillage and irrigation practices on the surface structure of an arable soil in New Zealand. Our hypothesis was that topsoil structure would change under intensification of arable production, affecting gas exchange. Intact soil cores were collected from plots under intensive tillage (IT) and direct drill (DD), irrigated or rainfed. In total, 32 cores were scanned by X-ray computed tomography (CT) to derive the pore network >30 µm. The cores were then used to measure soil-gas diffusivity, air-permeability and air-filled porosity of pores close to the resolution of the X-ray CT scans, namely ≥30 µm. The gas measurements allow the calculation of pore-network connectivity and tortuosity parameters, which were compared with the CT-derived structural characteristics. Long-term irrigation had little effect on any of the parameters analysed. Total porosity tended to be lower under IT than DD, whereas the CT-derived porosity was comparable. Both the CT-derived mean pore diameter (MPD) and other morphological parameters, as well as gas measurement-derived parameters, highlighted a less developed structure under IT. The differences in the functional pore-network structure were attributed to SOC depletion and the mechanical disturbance through IT. Significant correlations between CT-derived parameters and functional gas transport parameters such as tortuosity and MPD were found, which suggest that X-ray CT could be useful in the prediction of gas transport.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3291713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact