Mitochondrial Ca2+ uptake is an important mediator of metabolism and cell death. Identification of components of the highly conserved mitochondrial Ca2+ uniporter has opened it up to genetic analysis in model organisms. Here, we report a comprehensive genetic characterization of all known uniporter components conserved in Drosophila. While loss of pore-forming MCU or EMRE abolishes fast mitochondrial Ca2+ uptake, this results in only mild phenotypes when young, despite shortened lifespans. In contrast, loss of the MICU1 gatekeeper is developmentally lethal, consistent with unregulated Ca2+ uptake. Mutants for the neuronally restricted regulator MICU3 are viable with mild neurological impairment. Genetic interaction analyses reveal that MICU1 and MICU3 are not functionally interchangeable. More surprisingly, loss of MCU or EMRE does not suppress MICU1 mutant lethality, suggesting that this results from uniporter-independent functions. Our data reveal the interplay among components of the mitochondrial Ca2+ uniporter and shed light on their physiological requirements in vivo.

Comprehensive Genetic Characterization of Mitochondrial Ca2+ Uniporter Components Reveals Their Different Physiological Requirements In Vivo

von Stockum S;Ziviani E;Whitworth AJ.
2019

Abstract

Mitochondrial Ca2+ uptake is an important mediator of metabolism and cell death. Identification of components of the highly conserved mitochondrial Ca2+ uniporter has opened it up to genetic analysis in model organisms. Here, we report a comprehensive genetic characterization of all known uniporter components conserved in Drosophila. While loss of pore-forming MCU or EMRE abolishes fast mitochondrial Ca2+ uptake, this results in only mild phenotypes when young, despite shortened lifespans. In contrast, loss of the MICU1 gatekeeper is developmentally lethal, consistent with unregulated Ca2+ uptake. Mutants for the neuronally restricted regulator MICU3 are viable with mild neurological impairment. Genetic interaction analyses reveal that MICU1 and MICU3 are not functionally interchangeable. More surprisingly, loss of MCU or EMRE does not suppress MICU1 mutant lethality, suggesting that this results from uniporter-independent functions. Our data reveal the interplay among components of the mitochondrial Ca2+ uniporter and shed light on their physiological requirements in vivo.
File in questo prodotto:
File Dimensione Formato  
Comprehensive Genetic Characterization ...ent Physiological Requirements In Vivo.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3309310
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 24
social impact