RSL3, a drug candidate prototype for cancer chemotherapy, triggers ferroptosis by inactivating GPx4. Here we report the purification of the protein indispensable for GPx4 inactivation by RSL3. MS analysis reveals 14-3-3 isoforms as candidates and recombinant human 14-3-3epsilon confirms the identification. The function of 14-3-3 is redox-regulated. Moreover, overexpression and silencing of the gene coding for 14-3-3 consistently control the inactivation of GPx4 by RSL3. The interaction of GPx4 with a redox-regulated adaptor protein, operating in cell signalling, further contributes to frame it within redox-regulated pathways of cell survival and death and opens new therapeutic perspectives.
Inactivation of the glutathione peroxidase GPx4 by the ferroptosis-inducing molecule RSL3 requires the adaptor protein 14-3-3 epsilon
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Ana-Marija Vučković;Valentina Bosello Travain;Luciana Bordin;Giorgio Cozza;Giovanni Miotto;Monica Rossetto;Stefano Toppo;Rina Venerando;Mattia Zaccarin;Matilde Maiorino;Fulvio Ursini;Antonella Roveri
			2019
Abstract
RSL3, a drug candidate prototype for cancer chemotherapy, triggers ferroptosis by inactivating GPx4. Here we report the purification of the protein indispensable for GPx4 inactivation by RSL3. MS analysis reveals 14-3-3 isoforms as candidates and recombinant human 14-3-3epsilon confirms the identification. The function of 14-3-3 is redox-regulated. Moreover, overexpression and silencing of the gene coding for 14-3-3 consistently control the inactivation of GPx4 by RSL3. The interaction of GPx4 with a redox-regulated adaptor protein, operating in cell signalling, further contributes to frame it within redox-regulated pathways of cell survival and death and opens new therapeutic perspectives.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											FEBS 2019.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Preprint (AM - Author's Manuscript - submitted)
										 
									
									
									
									
										
											Licenza:
											
											
												Accesso gratuito
												
												
												
											
										 
									
									
										Dimensione
										9.75 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								9.75 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




