We consider Riesz transforms of any order associated to an Ornstein--Uhlenbeck operator , with covariance Q given by a real, symmetric and positive definite matrix, and with drift B given by a real matrix whose eigenvalues have negative real parts. In this general Gaussian context, we prove that a Riesz transform is of weak type (1,1) with respect to the invariant measure if and only if its order is at most 2.

Riesz transforms of a general Ornstein--Uhlenbeck semigroup

Valentina Casarino;Paolo Ciatti;Peter Sjögren
2021

Abstract

We consider Riesz transforms of any order associated to an Ornstein--Uhlenbeck operator , with covariance Q given by a real, symmetric and positive definite matrix, and with drift B given by a real matrix whose eigenvalues have negative real parts. In this general Gaussian context, we prove that a Riesz transform is of weak type (1,1) with respect to the invariant measure if and only if its order is at most 2.
File in questo prodotto:
File Dimensione Formato  
CCS_Riesz.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.01 MB
Formato Adobe PDF
3.01 MB Adobe PDF Visualizza/Apri
Casarino-Ciatti-Sjogren-Riesz-14february2021-reviewed.pdf

accesso aperto

Tipologia: Postprint (accepted version)
Licenza: Creative commons
Dimensione 430.6 kB
Formato Adobe PDF
430.6 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3335822
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact