We consider Riesz transforms of any order associated to an Ornstein--Uhlenbeck operator , with covariance Q given by a real, symmetric and positive definite matrix, and with drift B given by a real matrix whose eigenvalues have negative real parts. In this general Gaussian context, we prove that a Riesz transform is of weak type (1,1) with respect to the invariant measure if and only if its order is at most 2.

Riesz transforms of a general Ornstein--Uhlenbeck semigroup

Valentina Casarino;Paolo Ciatti;Peter Sjögren
2021

Abstract

We consider Riesz transforms of any order associated to an Ornstein--Uhlenbeck operator , with covariance Q given by a real, symmetric and positive definite matrix, and with drift B given by a real matrix whose eigenvalues have negative real parts. In this general Gaussian context, we prove that a Riesz transform is of weak type (1,1) with respect to the invariant measure if and only if its order is at most 2.
File in questo prodotto:
File Dimensione Formato  
Casarino-Ciatti-Sjogren-Riesz-ArXiv.pdf

accesso aperto

Descrizione: MIUR (PRIN 2016 “Real and Complex Manifolds: Geometry, Topology and Harmonic Analysis”). The third author was supported by GNAMPA (Professore Visitatore Bando 30/11/2018).
Tipologia: Preprint (submitted version)
Licenza: Accesso gratuito
Dimensione 335.56 kB
Formato Adobe PDF
335.56 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3335822
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact