This study considered possible sexual dimorphism in the relative lengths of the second, third and fourth digits (digit ratio), in calves. Furthermore, a different length of the bone structures of the third (3D) and of the fourth (4D) digits has been examined as an evolutionary adaptation to locomotion on soft ground. The length of the digital bones of the right fore-limb of 33 females and 15 male calves was measured in vivo using a portable X-ray machine. The vestigial structure of the second digit (2D), and 3D and 4D, from metacarpus to the third phalanx were considered in a mixed model, as well as some ratios between 2D and different parts of 3D or 4D (2D:3D and 2D:4D). A covariate for the mean finger length was considered for digit ratios to control for possible biases due to shape allometry. Shorter first phalanx and trotter were found in 3D than in 4D, and the reverse for the third phalanx. The 2D was significantly shorter in females, as well as the second phalanges of 3D and 4D. Significant sex differences in 2D:3D and 2D:4D were found for some digit parts of 3D and 4D and for the first phalanges of 3D:4D. These ratios were always shorter in females, in contrast to that found in most mammals. The asymmetry between 3D and 4D could mean a functional adaptation for locomotion. Sex differences in 2D:4D and 3D:4D were found, but with a reverse pattern than in most mammal species (males > females rather than males < females). In this regard digit ratio in calves was similar to that of Old World monkeys. This study is the first investigation of digit ratio in Ungulates, whose limbs differ from the limbs of most mammals, maintaining five digits. The reverse pattern of sex differences (digit ratios: males> females) could be due to the peculiar nature of the vestigial dewclaw of 2D and to the hormone patterns acting on this digit during development, but further research is required around this topic.
Digit ratio and length asymmetry in calves’ limbs
Sartori C.
;Gianesella M.;Pilastro A.;Mantovani R.;Armato L.;Fiore E.
2020
Abstract
This study considered possible sexual dimorphism in the relative lengths of the second, third and fourth digits (digit ratio), in calves. Furthermore, a different length of the bone structures of the third (3D) and of the fourth (4D) digits has been examined as an evolutionary adaptation to locomotion on soft ground. The length of the digital bones of the right fore-limb of 33 females and 15 male calves was measured in vivo using a portable X-ray machine. The vestigial structure of the second digit (2D), and 3D and 4D, from metacarpus to the third phalanx were considered in a mixed model, as well as some ratios between 2D and different parts of 3D or 4D (2D:3D and 2D:4D). A covariate for the mean finger length was considered for digit ratios to control for possible biases due to shape allometry. Shorter first phalanx and trotter were found in 3D than in 4D, and the reverse for the third phalanx. The 2D was significantly shorter in females, as well as the second phalanges of 3D and 4D. Significant sex differences in 2D:3D and 2D:4D were found for some digit parts of 3D and 4D and for the first phalanges of 3D:4D. These ratios were always shorter in females, in contrast to that found in most mammals. The asymmetry between 3D and 4D could mean a functional adaptation for locomotion. Sex differences in 2D:4D and 3D:4D were found, but with a reverse pattern than in most mammal species (males > females rather than males < females). In this regard digit ratio in calves was similar to that of Old World monkeys. This study is the first investigation of digit ratio in Ungulates, whose limbs differ from the limbs of most mammals, maintaining five digits. The reverse pattern of sex differences (digit ratios: males> females) could be due to the peculiar nature of the vestigial dewclaw of 2D and to the hormone patterns acting on this digit during development, but further research is required around this topic.File | Dimensione | Formato | |
---|---|---|---|
Sartori et al., 2020 Digit ratio and lenght asymmetry in calves limbs.pdf
non disponibili
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
2.09 MB
Formato
Adobe PDF
|
2.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.