The Alpine chain in western and central Europe is a complex orogen developed as a result of the African-Adriatic plate convergence towards the European continent and the closure of several Tethys oceanic branches. Seismic tomography studies detected high-wave-speed slabs plunging beneath the orogen to variable depths and a potential change in subduction polarity beneath the Central Alps. Alpine subduction is expected to leave a significant imprint on the surrounding mantle fabrics, although deformation associated with the Hercynian Orogeny, which affected Europe prior to the collision with Adria, may have also been preserved in the European lithosphere. Here we estimate SKS anisotropy beneath the central and greater Alpine region at 113 broadband seismic stations from the AlpArray experiment as well as permanent networks from Italy, Switzerland, Austria, Germany, and France. We compare the new improved dataset with previous studies of anisotropy, mantle tomography, lithospheric thickne...
Mantle flow below the central and greater Alpine region: insights from SKS anisotropy analysis at AlpArray and permanent stations
Faccenda, ManueleConceptualization
2020
Abstract
The Alpine chain in western and central Europe is a complex orogen developed as a result of the African-Adriatic plate convergence towards the European continent and the closure of several Tethys oceanic branches. Seismic tomography studies detected high-wave-speed slabs plunging beneath the orogen to variable depths and a potential change in subduction polarity beneath the Central Alps. Alpine subduction is expected to leave a significant imprint on the surrounding mantle fabrics, although deformation associated with the Hercynian Orogeny, which affected Europe prior to the collision with Adria, may have also been preserved in the European lithosphere. Here we estimate SKS anisotropy beneath the central and greater Alpine region at 113 broadband seismic stations from the AlpArray experiment as well as permanent networks from Italy, Switzerland, Austria, Germany, and France. We compare the new improved dataset with previous studies of anisotropy, mantle tomography, lithospheric thickne...| File | Dimensione | Formato | |
|---|---|---|---|
|
Petrescu2020SE.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
14.55 MB
Formato
Adobe PDF
|
14.55 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




