The diffusion of distributed energy resources in distribution networks requires new approaches to exploit the users' capabilities of providing ancillary services. Of particular interest will be the coordination of microgrids operating as an aggregate of demand and supply units. This work reports a model predictive control (MPC) application in microgrids for the efficient energy management of energy storage systems and photovoltaic units. The MPC minimizes the economic cost of aggregate prosumers into a prediction horizon by forecasting generation and absorption profiles. The MPC is compared in realistic conditions with a heuristic strategy that acts in a instant manner, without taking into account signals prediction. The work aims at investigating the effect that different types of energy tariffs have in enhancing the end-users' flexibility, based on three examples of currently applied tariffs, comparing the two storage control modes. The MPC always achieves a better solution than the heuristic approach in all considered scenarios from the cost minimization point of view, with an improvement that is amplified by increasing the energy price variations between peak and off-peak periods. Furthermore, the MPC approach provides a cost saving when compared to the case considering a microgrid endowed with only photovoltaic units, in which no storage is installed. Findings in this work confirm that storage units better perform when some knowledge of future demand and supply trends is provided, ensuring an economic cost saving and an important service for the overall community.

Leveraging demand flexibility by exploiting prosumer response to price signals in microgrids

Simmini F.;Agostini M.;Coppo M.;Caldognetto T.;Cervi A.;Carli R.;Turri R.;Tenti P.
2020

Abstract

The diffusion of distributed energy resources in distribution networks requires new approaches to exploit the users' capabilities of providing ancillary services. Of particular interest will be the coordination of microgrids operating as an aggregate of demand and supply units. This work reports a model predictive control (MPC) application in microgrids for the efficient energy management of energy storage systems and photovoltaic units. The MPC minimizes the economic cost of aggregate prosumers into a prediction horizon by forecasting generation and absorption profiles. The MPC is compared in realistic conditions with a heuristic strategy that acts in a instant manner, without taking into account signals prediction. The work aims at investigating the effect that different types of energy tariffs have in enhancing the end-users' flexibility, based on three examples of currently applied tariffs, comparing the two storage control modes. The MPC always achieves a better solution than the heuristic approach in all considered scenarios from the cost minimization point of view, with an improvement that is amplified by increasing the energy price variations between peak and off-peak periods. Furthermore, the MPC approach provides a cost saving when compared to the case considering a microgrid endowed with only photovoltaic units, in which no storage is installed. Findings in this work confirm that storage units better perform when some knowledge of future demand and supply trends is provided, ensuring an economic cost saving and an important service for the overall community.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3352257
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact