Tandem Repeat Proteins (TRPs) are ubiquitous in cells and are enriched in eukaryotes. They contributed to the evolution of organism complexity, specializing for functions that require quick adaptability such as immunity-related functions. To investigate the hypothesis of repeat protein evolution through exon duplication and rearrangement, we designed a tool to analyze the relationships between exon/intron patterns and structural symmetries. The tool allows comparison of the structure fragments as defined by exon/intron boundaries from Ensembl against the structural element repetitions from RepeatsDB. The all-against-all pairwise structural alignment between fragments and comparison of the two definitions (structural units and exons) are visualized in a single matrix, the “repeat/exon plot”. An analysis of different repeat protein families, including the solenoids Leucine-Rich, Ankyrin, Pumilio, HEAT repeats and the β propellers Kelch-like, WD40 and RCC1, shows different behaviors, illustrated here through examples. For each example, the analysis of the exon mapping in homologous proteins supports the conservation of their exon patterns. We propose that when a clear-cut relationship between exon and structural boundaries can be identified, it is possible to infer a specific “evolutionary pattern” which may improve TRPs detection and classification.

A novel approach to investigate the evolution of structured tandem repeat protein families by exon duplication

Paladin L.;Necci M.;Piovesan D.;Andrade-Navarro M. A.;Tosatto S. C. E.
2020

Abstract

Tandem Repeat Proteins (TRPs) are ubiquitous in cells and are enriched in eukaryotes. They contributed to the evolution of organism complexity, specializing for functions that require quick adaptability such as immunity-related functions. To investigate the hypothesis of repeat protein evolution through exon duplication and rearrangement, we designed a tool to analyze the relationships between exon/intron patterns and structural symmetries. The tool allows comparison of the structure fragments as defined by exon/intron boundaries from Ensembl against the structural element repetitions from RepeatsDB. The all-against-all pairwise structural alignment between fragments and comparison of the two definitions (structural units and exons) are visualized in a single matrix, the “repeat/exon plot”. An analysis of different repeat protein families, including the solenoids Leucine-Rich, Ankyrin, Pumilio, HEAT repeats and the β propellers Kelch-like, WD40 and RCC1, shows different behaviors, illustrated here through examples. For each example, the analysis of the exon mapping in homologous proteins supports the conservation of their exon patterns. We propose that when a clear-cut relationship between exon and structural boundaries can be identified, it is possible to infer a specific “evolutionary pattern” which may improve TRPs detection and classification.
File in questo prodotto:
File Dimensione Formato  
Manuscript.pdf

accesso aperto

Descrizione: Pubblicazione
Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 981.67 kB
Formato Adobe PDF
981.67 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3352744
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact