The recent development of mobile surveying platforms and crowdsourced geoinformation has produced a huge amount of non-validated data that are now available for research and application. In the field of risk analysis, with particular reference to landslide hazard, images generated by autonomous platforms (such as UAVs, ground-based acquisition systems, satellite sensors) and pictures obtained from web data mining are easily gathered and contribute to the fast surge in the amount of non-organized information that may engulf data storage facilities. Therefore, the high potential impact of such methods is severely reduced by the need of a massive amount of human intelligence tasks (HITs), which is necessary to filter and classify the data, whatever the final purpose. In this work, we present a new set of convolutional neural networks (CNNs) specifically designed for the automated recognition of landslides and mass movements in non-standard pictures that can be used in automated image classification, in supporting UAV autonomous guidance and in the filtering of data-mined information. Computer vision can be of great help in fostering the autonomous capability of intelligent systems to complement, or completely substitute, HITs. Image and object recognition are at the forefront of this research field. The deep learning procedure has been accomplished by applying transfer learning to some of the top-performer CNNs available in the literature. Results show that the deep learning machines, calibrated on a relevant dataset of validated images of landforms, may supply reliable predictions with computational time and resource requirements compatible with most of the UAV platforms and web data mining applications in landslide hazard studies. Average accuracy achieved by the proposed methods ranges between 87 and 90% and is consistently higher than that obtained by general-purpose state-of-the-art image recognition convolutional neural networks. The method can be applied to early warning, vulnerability assessment, residual risk estimation, model parameterisation and landslide mapping. Specific advantages will be the reduction of the present limitations in the intelligent guidance of landslide mapping drones, the classification of fake news, the validation of post-disaster information and the correct interpretation of an impending change in the environment.

Landslide detection by deep learning of non-nadiral and crowdsourced optical images

Catani F.
2021

Abstract

The recent development of mobile surveying platforms and crowdsourced geoinformation has produced a huge amount of non-validated data that are now available for research and application. In the field of risk analysis, with particular reference to landslide hazard, images generated by autonomous platforms (such as UAVs, ground-based acquisition systems, satellite sensors) and pictures obtained from web data mining are easily gathered and contribute to the fast surge in the amount of non-organized information that may engulf data storage facilities. Therefore, the high potential impact of such methods is severely reduced by the need of a massive amount of human intelligence tasks (HITs), which is necessary to filter and classify the data, whatever the final purpose. In this work, we present a new set of convolutional neural networks (CNNs) specifically designed for the automated recognition of landslides and mass movements in non-standard pictures that can be used in automated image classification, in supporting UAV autonomous guidance and in the filtering of data-mined information. Computer vision can be of great help in fostering the autonomous capability of intelligent systems to complement, or completely substitute, HITs. Image and object recognition are at the forefront of this research field. The deep learning procedure has been accomplished by applying transfer learning to some of the top-performer CNNs available in the literature. Results show that the deep learning machines, calibrated on a relevant dataset of validated images of landforms, may supply reliable predictions with computational time and resource requirements compatible with most of the UAV platforms and web data mining applications in landslide hazard studies. Average accuracy achieved by the proposed methods ranges between 87 and 90% and is consistently higher than that obtained by general-purpose state-of-the-art image recognition convolutional neural networks. The method can be applied to early warning, vulnerability assessment, residual risk estimation, model parameterisation and landslide mapping. Specific advantages will be the reduction of the present limitations in the intelligent guidance of landslide mapping drones, the classification of fake news, the validation of post-disaster information and the correct interpretation of an impending change in the environment.
2021
File in questo prodotto:
File Dimensione Formato  
Catani2021_Article_LandslideDetectionByDeepLearni_compressed.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3369565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 48
social impact