The aim of the study was to investigate the in vitro and in vivo pharmacological profile of cebranopadol, a novel agonist for opioid and nociceptin/orphanin FQ (N/OFQ) receptors (NOP). In vitro cebranopadol was assayed in calcium mobilization studies in cells coexpressing NOP or opioid receptors and chimeric G-proteins and in a bioluminescence resonance energy transfer (BRET) assay for studying receptor interaction with G-protein and b-arrestin 2. The mouse tail withdrawal and formalin tests were used for investigating cebranopadol antinociceptive properties. In calcium mobilization studies cebranopadol showed the following rank order of potency NOP = mu > kappa ≥ delta. In BRET studies, cebranopadol promoted NOP and mu receptors interaction with G-protein with similar high potency and efficacy. However, cebranopadol did not stimulated NOP–b-arrestin 2 interactions and displayed reduced potency at mu/b-arrestin 2. In vivo, cebranopadol exhibits highly potent and extremely long-lasting antinociceptive effects. The effects of cebranopadol in the tail withdrawal assay were sensitive to both SB-612111 and naloxone. Collectively the present results confirm and extend previous finding demonstrating that cebranopadol, by acting as mixed NOP/opioid receptor agonist, elicits robust analgesic effects in different pain models.

Pharmacological characterization of cebranopadol a novel analgesic acting as mixed nociceptin/orphanin FQ and opioid receptor agonist

MALFACINI, Davide;CALO', Girolamo
2016

Abstract

The aim of the study was to investigate the in vitro and in vivo pharmacological profile of cebranopadol, a novel agonist for opioid and nociceptin/orphanin FQ (N/OFQ) receptors (NOP). In vitro cebranopadol was assayed in calcium mobilization studies in cells coexpressing NOP or opioid receptors and chimeric G-proteins and in a bioluminescence resonance energy transfer (BRET) assay for studying receptor interaction with G-protein and b-arrestin 2. The mouse tail withdrawal and formalin tests were used for investigating cebranopadol antinociceptive properties. In calcium mobilization studies cebranopadol showed the following rank order of potency NOP = mu > kappa ≥ delta. In BRET studies, cebranopadol promoted NOP and mu receptors interaction with G-protein with similar high potency and efficacy. However, cebranopadol did not stimulated NOP–b-arrestin 2 interactions and displayed reduced potency at mu/b-arrestin 2. In vivo, cebranopadol exhibits highly potent and extremely long-lasting antinociceptive effects. The effects of cebranopadol in the tail withdrawal assay were sensitive to both SB-612111 and naloxone. Collectively the present results confirm and extend previous finding demonstrating that cebranopadol, by acting as mixed NOP/opioid receptor agonist, elicits robust analgesic effects in different pain models.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3386259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 50
social impact