Life is a non-equilibrium state of matter maintained at the expense of energy. Nature uses predominantly chemical energy stored in thermodynamically activated, but kinetically stable, molecules. These high-energy molecules are exploited for the synthesis of other biomolecules, for the activation of biological machinery such as pumps and motors, and for the maintenance of structural order. Knowledge of how chemical energy is transferred to biochemical processes is essential for the development of artificial systems with life-like processes. Here, we discuss how chemical energy can be used to control the structural organization of organic molecules. Four different strategies have been identified according to a distinguishable physical-organic basis. For each class, one example from biology and one from chemistry are discussed in detail to illustrate the practical implementation of each concept and the distinct opportunities they offer. Specific attention is paid to the discussion of chemically fueled non-equilibrium self-assembly. We discuss the meaning of non-equilibrium self-assembly, its kinetic origin, and strategies to develop synthetic non-equilibrium systems.

Chemically Fueled Self-Assembly in Biology and Chemistry

Das K.;Gabrielli L.;Prins L. J.
2021

Abstract

Life is a non-equilibrium state of matter maintained at the expense of energy. Nature uses predominantly chemical energy stored in thermodynamically activated, but kinetically stable, molecules. These high-energy molecules are exploited for the synthesis of other biomolecules, for the activation of biological machinery such as pumps and motors, and for the maintenance of structural order. Knowledge of how chemical energy is transferred to biochemical processes is essential for the development of artificial systems with life-like processes. Here, we discuss how chemical energy can be used to control the structural organization of organic molecules. Four different strategies have been identified according to a distinguishable physical-organic basis. For each class, one example from biology and one from chemistry are discussed in detail to illustrate the practical implementation of each concept and the distinct opportunities they offer. Specific attention is paid to the discussion of chemically fueled non-equilibrium self-assembly. We discuss the meaning of non-equilibrium self-assembly, its kinetic origin, and strategies to develop synthetic non-equilibrium systems.
File in questo prodotto:
File Dimensione Formato  
anie.202100274_just accepted.pdf

accesso aperto

Tipologia: Postprint (accepted version)
Licenza: Creative commons
Dimensione 6.68 MB
Formato Adobe PDF
6.68 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3390424
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 148
  • ???jsp.display-item.citation.isi??? 148
social impact