The millimeter wave (mmWave) band will provide multi-gigabits-per-second connectivity in the radio access of future wireless systems. The high propagation loss in this portion of the spectrum calls for the deployment of large antenna arrays to compensate for the loss through high directional gain, thus introducing the need for a spatial dimension in the channel model to accurately represent the performance of a mmWave network. In this perspective, ray tracing can characterize the channel in terms of Multi Path Components (MPCs) to provide a highly accurate model, at the price of extreme computational complexity (e.g., for processing detailed environment information about the propagation), which may limit the scalability of the simulations. In this paper, we present possible simplifications to improve the trade-off between accuracy and complexity in ray-tracing simulations at mmWaves by reducing the total number of MPCs. The effect of such simplifications is evaluated from a full-stack perspective through end-to-end simulations, testing different configuration parameters, propagation scenarios, and higher-layer protocol implementations. We then provide guidelines on the optimal degree of simplification, for which it is possible to reduce the complexity of simulations with a minimal reduction in accuracy for different deployment scenarios.

Accuracy vs. Complexity for mmWave Ray-Tracing: A Full Stack Perspective

Lecci, Mattia;Testolina, Paolo;Polese, Michele;Giordani, Marco;Zorzi, Michele
2021

Abstract

The millimeter wave (mmWave) band will provide multi-gigabits-per-second connectivity in the radio access of future wireless systems. The high propagation loss in this portion of the spectrum calls for the deployment of large antenna arrays to compensate for the loss through high directional gain, thus introducing the need for a spatial dimension in the channel model to accurately represent the performance of a mmWave network. In this perspective, ray tracing can characterize the channel in terms of Multi Path Components (MPCs) to provide a highly accurate model, at the price of extreme computational complexity (e.g., for processing detailed environment information about the propagation), which may limit the scalability of the simulations. In this paper, we present possible simplifications to improve the trade-off between accuracy and complexity in ray-tracing simulations at mmWaves by reducing the total number of MPCs. The effect of such simplifications is evaluated from a full-stack perspective through end-to-end simulations, testing different configuration parameters, propagation scenarios, and higher-layer protocol implementations. We then provide guidelines on the optimal degree of simplification, for which it is possible to reduce the complexity of simulations with a minimal reduction in accuracy for different deployment scenarios.
File in questo prodotto:
File Dimensione Formato  
Accuracy_Versus_Complexity_for_mmWave_Ray-Tracing_A_Full_Stack_Perspective.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3393591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 27
  • OpenAlex ND
social impact