Modelling hand kinematics is a challenging problem, crucial for several domains including robotics, 3D modelling, rehabilitation medicine and neuroscience. Currently available datasets are few and limited in the number of subjects and movements. The objective of this work is to advance the modelling of hand kinematics by releasing and validating a large publicly available kinematic dataset of hand movements and grasp kinematics. The dataset is based on the harmonization and calibration of the kinematics data of three multimodal datasets previously released (Ninapro DB1, DB2 and DB5, that include electromyography, inertial and dynamic data). The novelty of the dataset is related to the high number of subjects (77) and movements (40 movements, each repeated several times) for which we release for the first time calibrated kinematic data, resulting in the largest available kinematic dataset. Differently from the previous datasets, the data are also calibrated to avoid sensor nonlinearities. The validation confirms that the data are not affected by experimental procedures and that they are similar to data acquired in real-life conditions.
A large calibrated database of hand movements and grasps kinematics
Atzori M.;
2020
Abstract
Modelling hand kinematics is a challenging problem, crucial for several domains including robotics, 3D modelling, rehabilitation medicine and neuroscience. Currently available datasets are few and limited in the number of subjects and movements. The objective of this work is to advance the modelling of hand kinematics by releasing and validating a large publicly available kinematic dataset of hand movements and grasp kinematics. The dataset is based on the harmonization and calibration of the kinematics data of three multimodal datasets previously released (Ninapro DB1, DB2 and DB5, that include electromyography, inertial and dynamic data). The novelty of the dataset is related to the high number of subjects (77) and movements (40 movements, each repeated several times) for which we release for the first time calibrated kinematic data, resulting in the largest available kinematic dataset. Differently from the previous datasets, the data are also calibrated to avoid sensor nonlinearities. The validation confirms that the data are not affected by experimental procedures and that they are similar to data acquired in real-life conditions.File | Dimensione | Formato | |
---|---|---|---|
s41597-019-0349-2.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
2.41 MB
Formato
Adobe PDF
|
2.41 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.