The solution of linear systems of equations is a central task in a number of scientific and engineering applications. In many cases the solution of linear systems may take most of the simulation time thus representing a major bottleneck in the further development of scientific and technical software. For large scale simulations, nowadays accounting for several millions or even billions of unknowns, it is quite common to resort to preconditioned iterative solvers for exploiting their low memory requirements and, at least potential, parallelism. Approximate inverses have been shown to be robust and effective preconditioners in various contexts. In this work, we show how adaptive Factored Sparse Approximate Inverse (aFSAI), characterized by a very high degree of parallelism, can be successfully implemented on a distributed memory computer equipped with GPU accelerators. Taking advantage of GPUs in adaptive FSAI set-up is not a trivial task, nevertheless we show through an extensive numerical experimentation how the proposed approach outperforms more traditional preconditioners and results in a close-to-ideal behavior in challenging linear algebra problems.

A GPU-accelerated adaptive FSAI preconditioner for massively parallel simulations

Isotton G.
Membro del Collaboration Group
;
Janna Carlo
Membro del Collaboration Group
;
2021

Abstract

The solution of linear systems of equations is a central task in a number of scientific and engineering applications. In many cases the solution of linear systems may take most of the simulation time thus representing a major bottleneck in the further development of scientific and technical software. For large scale simulations, nowadays accounting for several millions or even billions of unknowns, it is quite common to resort to preconditioned iterative solvers for exploiting their low memory requirements and, at least potential, parallelism. Approximate inverses have been shown to be robust and effective preconditioners in various contexts. In this work, we show how adaptive Factored Sparse Approximate Inverse (aFSAI), characterized by a very high degree of parallelism, can be successfully implemented on a distributed memory computer equipped with GPU accelerators. Taking advantage of GPUs in adaptive FSAI set-up is not a trivial task, nevertheless we show through an extensive numerical experimentation how the proposed approach outperforms more traditional preconditioners and results in a close-to-ideal behavior in challenging linear algebra problems.
File in questo prodotto:
File Dimensione Formato  
2010.14175.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3396145
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact