Co3O4 thin films and nanosystems are implemented in a broad range of functional systems, including gas sensors, (photo)catalysts, and electrochemical devices for energy applications. In this regard, chemical vapor deposition (CVD) is a promising route for the fabrication of high-quality films in which the precursor choice plays a key role in the process development. In this work, a heteroleptic cobalt complex bearing fluorinated diketonate ligands along with a diamine moiety [Co(tfa)2·TMEDA; tfa = 1,1,1-trifluoro-2,4-pentanedionate and TMEDA =N,N,N′,N′-tetramethylethylenediamine] is investigated as a potential Co molecular precursor for the CVD of Co3O4systems. For the first time, the compound is characterized by crystal structure determination and comprehensive analytical studies, focusing also on its thermal properties and fragmentation patterns, important figures of merit for a CVD precursor. The outcomes of this investigation, accompanied by detailed theoretical studies, highlight its very favorable properties for CVD applications. In fact, growth experiments under oxygen atmospheres containing water vapor revealed the suitability of Co(tfa)2·TMEDA for the fabrication of high-quality, phase-pure Co3O4thin films. The versatility of the proposed strategy in tailoring Co3O4structural/morphological features highlights its potential to obtain multi-functional films with controllable properties for a variety of eventual technological end-uses.
Facile preparation of a cobalt diamine diketonate adduct as a potential vapor phase precursor for Co3O4 films
Barreca D.
;Bigiani L.;Gasparotto A.;Roverso M.;Bogialli S.;Maccato C.
2021
Abstract
Co3O4 thin films and nanosystems are implemented in a broad range of functional systems, including gas sensors, (photo)catalysts, and electrochemical devices for energy applications. In this regard, chemical vapor deposition (CVD) is a promising route for the fabrication of high-quality films in which the precursor choice plays a key role in the process development. In this work, a heteroleptic cobalt complex bearing fluorinated diketonate ligands along with a diamine moiety [Co(tfa)2·TMEDA; tfa = 1,1,1-trifluoro-2,4-pentanedionate and TMEDA =N,N,N′,N′-tetramethylethylenediamine] is investigated as a potential Co molecular precursor for the CVD of Co3O4systems. For the first time, the compound is characterized by crystal structure determination and comprehensive analytical studies, focusing also on its thermal properties and fragmentation patterns, important figures of merit for a CVD precursor. The outcomes of this investigation, accompanied by detailed theoretical studies, highlight its very favorable properties for CVD applications. In fact, growth experiments under oxygen atmospheres containing water vapor revealed the suitability of Co(tfa)2·TMEDA for the fabrication of high-quality, phase-pure Co3O4thin films. The versatility of the proposed strategy in tailoring Co3O4structural/morphological features highlights its potential to obtain multi-functional films with controllable properties for a variety of eventual technological end-uses.File | Dimensione | Formato | |
---|---|---|---|
reprint_Dalton_Co_tfa.pdf
non disponibili
Descrizione: reprint - versione editore
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
5.92 MB
Formato
Adobe PDF
|
5.92 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
reprint_Dalton_Co_tfa_ESI.pdf
accesso aperto
Descrizione: Supporting Information - versione editore
Tipologia:
Altro materiale allegato
Licenza:
Accesso gratuito
Dimensione
2.52 MB
Formato
Adobe PDF
|
2.52 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.