The most effective expression of the 4.0 Era is represented by cyber-physical systems (CPSs). Historically, measurement and monitoring systems (MMSs) have been an essential part of CPSs; however, by introducing the 4.0 enabling technologies into MMSs, a MMS can evolve into a cyber-physical measurement system (CPMS). Starting from this consideration, this work reports a preliminary case study of a CPMS, namely an innovative bioinspired robotic platform that can be used for measurement and monitoring applications in confined and constrained environments. The innovative system is a "soft growing" robot that can access a remote site through controlled lengthening and steering of its body via a pneumatic actuation mechanism. The system can be endowed with different sensors at the tip, or along its body, to enable remote measurement and monitoring tasks; as a result, the robot can be employed to effectively deploy sensors in remote locations. In this work, a digital twin of the system is developed for simulation of a practical measurement scenario. The ultimate goal is to achieve a self-adapting, fully/partially autonomous system for remote monitoring operations to be used reliably and safely for the inspection of unknown and/or constrained environments.

Towards the development of a cyber-physical measurement system (CPMS): Case study of a bioinspired soft growing robot for remote measurement and monitoring applications

Debei S.;Chiodini S.
2021

Abstract

The most effective expression of the 4.0 Era is represented by cyber-physical systems (CPSs). Historically, measurement and monitoring systems (MMSs) have been an essential part of CPSs; however, by introducing the 4.0 enabling technologies into MMSs, a MMS can evolve into a cyber-physical measurement system (CPMS). Starting from this consideration, this work reports a preliminary case study of a CPMS, namely an innovative bioinspired robotic platform that can be used for measurement and monitoring applications in confined and constrained environments. The innovative system is a "soft growing" robot that can access a remote site through controlled lengthening and steering of its body via a pneumatic actuation mechanism. The system can be endowed with different sensors at the tip, or along its body, to enable remote measurement and monitoring tasks; as a result, the robot can be employed to effectively deploy sensors in remote locations. In this work, a digital twin of the system is developed for simulation of a practical measurement scenario. The ultimate goal is to achieve a self-adapting, fully/partially autonomous system for remote monitoring operations to be used reliably and safely for the inspection of unknown and/or constrained environments.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3408845
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact