One of the main concerns in industrialized countries is represented by per- and poly-fluoroalkyl substances (PFAS), persistent contaminants hardly to be dealt with by conventional wastewater treatment processes. Phyco-remediation was proposed as a green alternative method to treat wastewater. Synechocystis sp. PCC6803 is a unicellular photosynthetic organism candidate for bioremediation approaches based on synthetic biology, as it is able to survive in a wide range of polluted waters. In this work, we assessed the possibility of applying Synechocystis in PFAS-enriched waters, which was never reported in the previous literature. Respirometry was applied to evaluate short-term toxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), which did not affect growth up to 0.5 and 4 mg L−1, respectively. Continuous and batch systems were used to assess the long-term effects, and no toxicity was highlighted for both compounds at quite high concentration (1 mg L−1). A partial removal was observed for PFOS and PFOA, (88% and 37%, with removal rates of about 0.15 and 0.36 mg L−1 d−1, respectively). Measurements in fractionated biomass suggested a role for Synechocystis in the sequestration of PFAS: PFOS is mainly internalized in the cell, while PFOA is somehow transformed by still unknown pathways. A preliminary bioinformatic search gave hints on transporters and enzymes possibly involved in such sequestration/transformation processes, opening the route to metabolic engineering in the perspective application of this cyanobacterium as a new phyco-remediation tool, based on synthetic biology.

Bioremediation of Per- and Poly-Fluoroalkyl Substances (PFAS) by Synechocystis sp. PCC 6803: A Chassis for a Synthetic Biology Approach

Marchetto, Francesca
Investigation
;
Roverso, Marco
Investigation
;
Righetti, Davide
Investigation
;
Bogialli, Sara
Methodology
;
Filippini, Francesco
Data Curation
;
Bergantino, Elisabetta
Resources
;
Sforza, Eleonora
Supervision
2021

Abstract

One of the main concerns in industrialized countries is represented by per- and poly-fluoroalkyl substances (PFAS), persistent contaminants hardly to be dealt with by conventional wastewater treatment processes. Phyco-remediation was proposed as a green alternative method to treat wastewater. Synechocystis sp. PCC6803 is a unicellular photosynthetic organism candidate for bioremediation approaches based on synthetic biology, as it is able to survive in a wide range of polluted waters. In this work, we assessed the possibility of applying Synechocystis in PFAS-enriched waters, which was never reported in the previous literature. Respirometry was applied to evaluate short-term toxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), which did not affect growth up to 0.5 and 4 mg L−1, respectively. Continuous and batch systems were used to assess the long-term effects, and no toxicity was highlighted for both compounds at quite high concentration (1 mg L−1). A partial removal was observed for PFOS and PFOA, (88% and 37%, with removal rates of about 0.15 and 0.36 mg L−1 d−1, respectively). Measurements in fractionated biomass suggested a role for Synechocystis in the sequestration of PFAS: PFOS is mainly internalized in the cell, while PFOA is somehow transformed by still unknown pathways. A preliminary bioinformatic search gave hints on transporters and enzymes possibly involved in such sequestration/transformation processes, opening the route to metabolic engineering in the perspective application of this cyanobacterium as a new phyco-remediation tool, based on synthetic biology.
2021
File in questo prodotto:
File Dimensione Formato  
2021_Marchetto_et_al.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3409288
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact