In this paper, we recover a class of displacement interpolations of probability measures, in the sense of the Optimal Transport theory, by means of semiclassical measures associated with solutions of Schrodinger equation defined on the flat torus. Moreover, we prove the completing viewpoint by proving that a family of displacement interpolations can always be viewed as a path of time-dependent semiclassical measures.

Schrodinger dynamics and optimal transport of measures

Zanelli L.
2021

Abstract

In this paper, we recover a class of displacement interpolations of probability measures, in the sense of the Optimal Transport theory, by means of semiclassical measures associated with solutions of Schrodinger equation defined on the flat torus. Moreover, we prove the completing viewpoint by proving that a family of displacement interpolations can always be viewed as a path of time-dependent semiclassical measures.
File in questo prodotto:
File Dimensione Formato  
Opt-LZ2021.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 342.71 kB
Formato Adobe PDF
342.71 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3410881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact