Freshly squeezed apple juice was subjected to air non-thermal plasma treatment to in-vestigate the capability of this processing method to inactivate microorganisms and to evaluate its safety when applied to liquid food products. Two different configurations of a transient spark discharge in ambient air were tested: an electrospray system with the juice flowing directly through the high voltage needle electrode, and a batch system, where the discharge was generated onto the surface of the juice. The key physico-chemical parameters of the juice, such as pH, conductivity, color, transmittance, and Brix degree, did not significantly change upon treatment. The concentration of nitrate ions formed by the plasma was safe, while that of nitrite ions and hydrogen peroxide was initially higher than the safety limits, but decreased within 24 h post treatment. The plasma effect on individual natural components of the juice, such as sugars, organic acids, and polyphenols, treated in water solutions led to their partial or substantial decomposition. However, when these compounds were plasma-treated altogether in the juice, they remained unaffected. The antimicrobial effect of the plasma processing was evaluated via the inoculation of model microorganisms. A stronger (6 log) decontamination was detected for bacteria Escherichia coli with respect to yeast Saccharomyces cerevisiae. Plasma processing led to a substantial extension of the juice shelf-life by up to 26 days if refrigerated, which represents a promising application potential in food technology.

Chemical and antimicrobial effects of air non-thermal plasma processing of fresh apple juice with focus on safety aspects

Tampieri F.
Investigation
;
Maran E.
Investigation
;
Marotta E.
Conceptualization
;
2021

Abstract

Freshly squeezed apple juice was subjected to air non-thermal plasma treatment to in-vestigate the capability of this processing method to inactivate microorganisms and to evaluate its safety when applied to liquid food products. Two different configurations of a transient spark discharge in ambient air were tested: an electrospray system with the juice flowing directly through the high voltage needle electrode, and a batch system, where the discharge was generated onto the surface of the juice. The key physico-chemical parameters of the juice, such as pH, conductivity, color, transmittance, and Brix degree, did not significantly change upon treatment. The concentration of nitrate ions formed by the plasma was safe, while that of nitrite ions and hydrogen peroxide was initially higher than the safety limits, but decreased within 24 h post treatment. The plasma effect on individual natural components of the juice, such as sugars, organic acids, and polyphenols, treated in water solutions led to their partial or substantial decomposition. However, when these compounds were plasma-treated altogether in the juice, they remained unaffected. The antimicrobial effect of the plasma processing was evaluated via the inoculation of model microorganisms. A stronger (6 log) decontamination was detected for bacteria Escherichia coli with respect to yeast Saccharomyces cerevisiae. Plasma processing led to a substantial extension of the juice shelf-life by up to 26 days if refrigerated, which represents a promising application potential in food technology.
2021
File in questo prodotto:
File Dimensione Formato  
Foods2021-2055.pdf

accesso aperto

Descrizione: Articolo .pdf
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.64 MB
Formato Adobe PDF
2.64 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3420680
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact