The origin of intermediate-depth subduction seismicity is a topic of research since long time. While plate unbending is considered as one of the main stress loading mechanisms, the processes responsible for earthquake nucleation are still unclear and depend on the question of whether failure occurs in the wet dehydrating portion of the slab or in the predominantly dry portion. Recently, the seismogenic portions of subducting oceanic slabs have been proposed to consist of dominantly dry metaperidotite that deforms by seismic brittle failure in absence of fluid-mediated embrittlement. In this work, we quantify by numerical modelling the differential stress achievable during unbending of a subducting slab. We show that the presence of discrete hydrated domains in a dry, strong slab amplifies the differential stress to high seismogenic values (ca. 3-4 GPa in the 100-200 km depth range) at intermediate depths. We also consider the effects of low temperature plasticity in olivine that can hinder the build-up of high differential stress to the first 100 km of depth.
How to quake a subducting dry slab at intermediate depths: Inferences from numerical modelling
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Toffol G.
						
						
						
							Membro del Collaboration Group
;Pennacchioni G.Membro del Collaboration Group
;Faccenda M.Membro del Collaboration Group
;Scambelluri M.Membro del Collaboration Group
	
		
		
	
			2022
Abstract
The origin of intermediate-depth subduction seismicity is a topic of research since long time. While plate unbending is considered as one of the main stress loading mechanisms, the processes responsible for earthquake nucleation are still unclear and depend on the question of whether failure occurs in the wet dehydrating portion of the slab or in the predominantly dry portion. Recently, the seismogenic portions of subducting oceanic slabs have been proposed to consist of dominantly dry metaperidotite that deforms by seismic brittle failure in absence of fluid-mediated embrittlement. In this work, we quantify by numerical modelling the differential stress achievable during unbending of a subducting slab. We show that the presence of discrete hydrated domains in a dry, strong slab amplifies the differential stress to high seismogenic values (ca. 3-4 GPa in the 100-200 km depth range) at intermediate depths. We also consider the effects of low temperature plasticity in olivine that can hinder the build-up of high differential stress to the first 100 km of depth.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											Toffol2021EPSL.pdf
										
																				
									
										
											 Accesso riservato 
											Tipologia:
											Published (Publisher's Version of Record)
										 
									
									
									
									
										
											Licenza:
											
											
												Accesso privato - non pubblico
												
												
												
											
										 
									
									
										Dimensione
										1.97 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								1.97 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




