The field of Plasmonics deals with interaction processes between an electromagnetic radiation of appropriate wavelength and the conduction electrons of a metal. The induced collective oscillation of the electrons is called Plasmon Resonance. The Localized Surface Plasmon Resonance (LSPR) occur when the excitation involves surface electrons of nanostructures with dimensions less or comparable to the excitation wavelength. The excitation causes a strong enhancement of the local field around the metal nanostructure, which, combined with Raman Spectroscopy, could be very interesting for molecular sensing. The Raman technique is well known for providing a fingerprint spectrum of a given molecule, but has the great limitation of low sensibility. By adsorbing the analyte of interest on a plasmonic substrate in the region of enhanced local field, high detection sensitivity can be reached through Surface Enhanced Raman Spectroscopy (SERS). The first part of the present work is focused on the synthesis and characterization of gold and silver nanoparticles (Au and Ag NPs) and gold nanoshells (Au NSs) and their exploitation for the realization of SERS substrates, both in colloidal solutions and on solid supports. Different metal nanostructures give the possibility to exploit the LSPR in a wide spectral range, from the Vis to the near IR. Their optical and morphological characterization is carried out with conventional techniques, like TEM, AFM, UV-Vis absorption and Surface Enhanced Raman Spectroscopy, and with a new characterization technique, rarely used in this research field: the Photoacoustic Spectroscopy. It provides information about the absorption contribution to the total extinction of a plasmonic nanostructure. From a rigorous measurement of the SERS enhancement factor and from Photoacoustic Spectroscopy data at different excitation wavelengths, some considerations could be done concerning the relation of far field extinction and near field SERS properties. SERS EF profile measurements on liquid and solid SERS substrates demonstrated the presence of hot spots. The solid SERS substrates were chemically stable, homogeneous and reproducible and showed EF values of about 104-105. In colloidal solution, the EF values were about 103-106, depending on the metal nanostructure. Photoacoustic measurements performed on Au NSs in solution were in agreement with theoretical predictions found in literature. In the second part of the work, the plasmonic substrates, realized with Au NPs and Au NSs, were used for the realization of label free SERS sensors, to detect toxic aromatic chemical species and biological molecules. A sensor for toxic volatile compounds, based on Au NPs and Au NSs substrates coupled with a porous organic-inorganic hybrid sol-gel matrix, was realized. The matrix was specifically chosen for exhibiting a high-affinity interaction to aromatic hydrocarbons. The enhancement activity of the Au NPs and Au NSs substrates on the sol gel matrix alone was demonstrated. Some problems in the xylene detection process through SERS were probably due to the fast matrix regeneration under the laser radiation. Although, the enhanced SERS efficiency due to the detection design was demonstrated. Another application was based on the development of a novel label-receptor system, based on the cromophore 4-hydroxyazobenzene-2 carboxylic acid (HABA) and its specific antibody, to be used in bio-analytical applications. The interesting behaviour of the HABA dye relies in changing its tautomeric structure from an azo to a hydrazo form, thanks to the interaction with its antibody. This structural change can be exploited for SERS detection of the label-receptor interaction. Properly synthesized and characterized HABA derivatives were adsorbed onto SERS substrates, further incubated in the antibody solution. The HABA signals were well visible on both Au NSs and Au NPs substrates. No HABA change could be detected through SERS, because the antibodies extracted in vivo from two rabbits, do not cause the quantitative change of the HABA structure.

La Plasmonica si occupa dell’interazione di una radiazione elettromagnetica di opportuna lunghezza d’onda con gli elettroni di conduzione di un metallo. L’oscillazione collettiva degli elettroni, indotta da questa interazione, è chiamata appunto Risonanza Plasmonica. La risonanza plasmonica di superficie localizzata avviene quando gli elettroni coinvolti sono quelli di superficie di un metallo nanostrutturato con dimensioni minori o comparabili alla lunghezza d’onda di eccitazione. Da questa eccitazione deriva una forte amplificazione del campo elettromagnetico locale, localizzato nelle immediate vicinanze della nanostruttura metallica. Tale amplificazione, unita a una tecnica di rivelazione spettroscopica specifica, quale la spettroscopia Raman, può essere sfruttata per la realizzazione di sensori molecolari. La tecnica Raman è conosciuta come altamente specifica, perché in grado di fornire uno spettro caratteristico della singola molecola, identificandone univocamente la presenza e la costituzione. La sua maggiore limitazione, però, è la bassa sensibilità. Ponendo l’analita in prossimità di un substrato plasmonico, proprio nella regione di forte amplificazione del campo locale, la sensibilità di rivelazione viene fortemente aumentata, dando origine alla spettroscopia Raman amplificata da superfici (SERS). La prima parte del presente lavoro è focalizzata sulla sintesi e sulla caratterizzazione di nanoparticelle d’argento, d’oro e di nano gusci d’oro (chiamati nanoshell) e sul loro impiego per la realizzazione di substrati SERS, sia in soluzione colloidale che su substrato solido. L’utilizzo di differenti nanostrutture metalliche, dà la possibilità di sfruttare la risonanza plasmonica localizzata di superficie in un’ampia regione spettrale, che si estende dal visibile al vicino infrarosso. La caratterizzazione ottica e morfologica delle nanostrutture è stata effettuata con tecniche convenzionali, come la spettroscopia di assorbimento UV-visibile, il SERS, la microscopia elettronica a trasmissione e la microscopia a forza atomica. Ad esse è stata affiancata anche una tecnica raramente usata nell’ambito della plasmonica: la spettroscopia fotoacustica. Questa può fornire informazioni riguardanti il contributo di assorbimento, all’estinzione totale, di una nanostruttura plasmonica. Da una rigorosa misura dei fattori di amplificazione e delle proprietà di fotoacustica al variare della lunghezza d’onda, possono essere fatte alcune considerazioni riguardanti la possibile relazione tra l’estinzione (proprietà di campo lontano) e l’ amplificazione SERS (proprietà di campo vicino). Le misure dei profili di eccitazione SERS su substrati plasmonici in liquido e su supporto solido, hanno evidenziato la presenza di hot spots, ovvero di zone fortemente amplificate dall’interazione di due o più nanostrutture. I substrati SERS solidi sono risultati chimicamente stabili, omogenei e riproducibili; essi presentano valori di fattori di amplificazione attorno a 104-105. In soluzione colloidale, i fattori di amplificazione delle nanostrutture hanno raggiunto valori nell’intervallo 103-106, dipendentemente dal tipo di nanostruttura metallica investigata. Le misure di fotoacustica effettuate su soluzioni colloidali di nanoshell d’oro si sono rivelate in accordo con le predizioni teoriche di letteratura. Nella seconda parte del lavoro, i substrati plasmonici, realizzati principalmente con nanoparticelle e nanoshell d’oro, sono stati impiegati per la realizzazione di sensori SERS per la rivelazione di specie chimiche e biologiche. É stato realizzato un sensore di composti tossici aromatici volatili, accoppiando un substrato plasmonico con un film poroso di sol gel ibrido organico-inorganico. La componente organica della matrice sol gel è stata appositamente scelta per la sua alta affinità a composti aromatici, quali lo Xilene. È stata dimostrata l’amplificazione dei segnali della matrice da parte della componente plasmonica, ma si sono riscontrati alcuni problemi nella rivelazione delle molecole di analita attraverso il SERS. La difficoltà nella rivelazione è probabilmente dovuta al veloce deadsorbimento dello Xilene dalla matrice a causa del forte riscaldamento locale causato dalla radiazione laser. Nonostante questo, si è comunque dimostrata l’aumentata efficienza del sensore progettato, rispetto ai suoi componenti singoli. La seconda applicazione studiata ha riguardato la realizzazione di un sistema analita-accettore innovativo, che può essere utilizzato per diverse applicazioni bioanalitiche; esso è basato sull’interazione tra un cromoforo diazobenzenico (HABA) e il suo anticorpo specifico. Alla base dell’applicazione si trova una proprietà interessante del suddetto cromoforo, che è quella di cambiare la sua struttura molecolare, passando da una forma azo alla forma idrazo, dopo aver interagito con il suo anticorpo specifico. Questa variazione nella struttura molecolare può essere sfruttata per la rivelazione dell’avvenuta interazione analita-accettore, mediante SERS. Alcuni derivati di questo cromoforo sono stati sintetizzati e caratterizzati in modo da poter essere adsorbiti su un substrato SERS, che viene successivamente incubato in una soluzione di anticorpo. I segnali SERS della molecola di HABA sono risultati ben visibili sia sui substrati di nanoparticelle che di nanoshell d’oro. Purtroppo non è stato possibile rivelare la variazione strutturale del cromoforo, in quanto gli anticorpi, estratti in vivo da due coniglietti, inducono solo un parziale cambio di struttura, rendendo la rivelazione SERS alquanto difficile.

Plasmonic nanostructures for the realization of sensor based on surface enhanced Raman spectroscopy / Weber, Verena. - (2014 Jan 30).

Plasmonic nanostructures for the realization of sensor based on surface enhanced Raman spectroscopy

Weber, Verena
2014

Abstract

La Plasmonica si occupa dell’interazione di una radiazione elettromagnetica di opportuna lunghezza d’onda con gli elettroni di conduzione di un metallo. L’oscillazione collettiva degli elettroni, indotta da questa interazione, è chiamata appunto Risonanza Plasmonica. La risonanza plasmonica di superficie localizzata avviene quando gli elettroni coinvolti sono quelli di superficie di un metallo nanostrutturato con dimensioni minori o comparabili alla lunghezza d’onda di eccitazione. Da questa eccitazione deriva una forte amplificazione del campo elettromagnetico locale, localizzato nelle immediate vicinanze della nanostruttura metallica. Tale amplificazione, unita a una tecnica di rivelazione spettroscopica specifica, quale la spettroscopia Raman, può essere sfruttata per la realizzazione di sensori molecolari. La tecnica Raman è conosciuta come altamente specifica, perché in grado di fornire uno spettro caratteristico della singola molecola, identificandone univocamente la presenza e la costituzione. La sua maggiore limitazione, però, è la bassa sensibilità. Ponendo l’analita in prossimità di un substrato plasmonico, proprio nella regione di forte amplificazione del campo locale, la sensibilità di rivelazione viene fortemente aumentata, dando origine alla spettroscopia Raman amplificata da superfici (SERS). La prima parte del presente lavoro è focalizzata sulla sintesi e sulla caratterizzazione di nanoparticelle d’argento, d’oro e di nano gusci d’oro (chiamati nanoshell) e sul loro impiego per la realizzazione di substrati SERS, sia in soluzione colloidale che su substrato solido. L’utilizzo di differenti nanostrutture metalliche, dà la possibilità di sfruttare la risonanza plasmonica localizzata di superficie in un’ampia regione spettrale, che si estende dal visibile al vicino infrarosso. La caratterizzazione ottica e morfologica delle nanostrutture è stata effettuata con tecniche convenzionali, come la spettroscopia di assorbimento UV-visibile, il SERS, la microscopia elettronica a trasmissione e la microscopia a forza atomica. Ad esse è stata affiancata anche una tecnica raramente usata nell’ambito della plasmonica: la spettroscopia fotoacustica. Questa può fornire informazioni riguardanti il contributo di assorbimento, all’estinzione totale, di una nanostruttura plasmonica. Da una rigorosa misura dei fattori di amplificazione e delle proprietà di fotoacustica al variare della lunghezza d’onda, possono essere fatte alcune considerazioni riguardanti la possibile relazione tra l’estinzione (proprietà di campo lontano) e l’ amplificazione SERS (proprietà di campo vicino). Le misure dei profili di eccitazione SERS su substrati plasmonici in liquido e su supporto solido, hanno evidenziato la presenza di hot spots, ovvero di zone fortemente amplificate dall’interazione di due o più nanostrutture. I substrati SERS solidi sono risultati chimicamente stabili, omogenei e riproducibili; essi presentano valori di fattori di amplificazione attorno a 104-105. In soluzione colloidale, i fattori di amplificazione delle nanostrutture hanno raggiunto valori nell’intervallo 103-106, dipendentemente dal tipo di nanostruttura metallica investigata. Le misure di fotoacustica effettuate su soluzioni colloidali di nanoshell d’oro si sono rivelate in accordo con le predizioni teoriche di letteratura. Nella seconda parte del lavoro, i substrati plasmonici, realizzati principalmente con nanoparticelle e nanoshell d’oro, sono stati impiegati per la realizzazione di sensori SERS per la rivelazione di specie chimiche e biologiche. É stato realizzato un sensore di composti tossici aromatici volatili, accoppiando un substrato plasmonico con un film poroso di sol gel ibrido organico-inorganico. La componente organica della matrice sol gel è stata appositamente scelta per la sua alta affinità a composti aromatici, quali lo Xilene. È stata dimostrata l’amplificazione dei segnali della matrice da parte della componente plasmonica, ma si sono riscontrati alcuni problemi nella rivelazione delle molecole di analita attraverso il SERS. La difficoltà nella rivelazione è probabilmente dovuta al veloce deadsorbimento dello Xilene dalla matrice a causa del forte riscaldamento locale causato dalla radiazione laser. Nonostante questo, si è comunque dimostrata l’aumentata efficienza del sensore progettato, rispetto ai suoi componenti singoli. La seconda applicazione studiata ha riguardato la realizzazione di un sistema analita-accettore innovativo, che può essere utilizzato per diverse applicazioni bioanalitiche; esso è basato sull’interazione tra un cromoforo diazobenzenico (HABA) e il suo anticorpo specifico. Alla base dell’applicazione si trova una proprietà interessante del suddetto cromoforo, che è quella di cambiare la sua struttura molecolare, passando da una forma azo alla forma idrazo, dopo aver interagito con il suo anticorpo specifico. Questa variazione nella struttura molecolare può essere sfruttata per la rivelazione dell’avvenuta interazione analita-accettore, mediante SERS. Alcuni derivati di questo cromoforo sono stati sintetizzati e caratterizzati in modo da poter essere adsorbiti su un substrato SERS, che viene successivamente incubato in una soluzione di anticorpo. I segnali SERS della molecola di HABA sono risultati ben visibili sia sui substrati di nanoparticelle che di nanoshell d’oro. Purtroppo non è stato possibile rivelare la variazione strutturale del cromoforo, in quanto gli anticorpi, estratti in vivo da due coniglietti, inducono solo un parziale cambio di struttura, rendendo la rivelazione SERS alquanto difficile.
30-gen-2014
The field of Plasmonics deals with interaction processes between an electromagnetic radiation of appropriate wavelength and the conduction electrons of a metal. The induced collective oscillation of the electrons is called Plasmon Resonance. The Localized Surface Plasmon Resonance (LSPR) occur when the excitation involves surface electrons of nanostructures with dimensions less or comparable to the excitation wavelength. The excitation causes a strong enhancement of the local field around the metal nanostructure, which, combined with Raman Spectroscopy, could be very interesting for molecular sensing. The Raman technique is well known for providing a fingerprint spectrum of a given molecule, but has the great limitation of low sensibility. By adsorbing the analyte of interest on a plasmonic substrate in the region of enhanced local field, high detection sensitivity can be reached through Surface Enhanced Raman Spectroscopy (SERS). The first part of the present work is focused on the synthesis and characterization of gold and silver nanoparticles (Au and Ag NPs) and gold nanoshells (Au NSs) and their exploitation for the realization of SERS substrates, both in colloidal solutions and on solid supports. Different metal nanostructures give the possibility to exploit the LSPR in a wide spectral range, from the Vis to the near IR. Their optical and morphological characterization is carried out with conventional techniques, like TEM, AFM, UV-Vis absorption and Surface Enhanced Raman Spectroscopy, and with a new characterization technique, rarely used in this research field: the Photoacoustic Spectroscopy. It provides information about the absorption contribution to the total extinction of a plasmonic nanostructure. From a rigorous measurement of the SERS enhancement factor and from Photoacoustic Spectroscopy data at different excitation wavelengths, some considerations could be done concerning the relation of far field extinction and near field SERS properties. SERS EF profile measurements on liquid and solid SERS substrates demonstrated the presence of hot spots. The solid SERS substrates were chemically stable, homogeneous and reproducible and showed EF values of about 104-105. In colloidal solution, the EF values were about 103-106, depending on the metal nanostructure. Photoacoustic measurements performed on Au NSs in solution were in agreement with theoretical predictions found in literature. In the second part of the work, the plasmonic substrates, realized with Au NPs and Au NSs, were used for the realization of label free SERS sensors, to detect toxic aromatic chemical species and biological molecules. A sensor for toxic volatile compounds, based on Au NPs and Au NSs substrates coupled with a porous organic-inorganic hybrid sol-gel matrix, was realized. The matrix was specifically chosen for exhibiting a high-affinity interaction to aromatic hydrocarbons. The enhancement activity of the Au NPs and Au NSs substrates on the sol gel matrix alone was demonstrated. Some problems in the xylene detection process through SERS were probably due to the fast matrix regeneration under the laser radiation. Although, the enhanced SERS efficiency due to the detection design was demonstrated. Another application was based on the development of a novel label-receptor system, based on the cromophore 4-hydroxyazobenzene-2 carboxylic acid (HABA) and its specific antibody, to be used in bio-analytical applications. The interesting behaviour of the HABA dye relies in changing its tautomeric structure from an azo to a hydrazo form, thanks to the interaction with its antibody. This structural change can be exploited for SERS detection of the label-receptor interaction. Properly synthesized and characterized HABA derivatives were adsorbed onto SERS substrates, further incubated in the antibody solution. The HABA signals were well visible on both Au NSs and Au NPs substrates. No HABA change could be detected through SERS, because the antibodies extracted in vivo from two rabbits, do not cause the quantitative change of the HABA structure.
nanoparticelle metalliche/metal nanoparticles, nanoshells metalliche/metal nanoshells, substrati SERS/SERS substrates, Spettroscopia Fotoacustica/Photoacoustic Spectroscopy, sensing chimico/chemical sensing;
Plasmonic nanostructures for the realization of sensor based on surface enhanced Raman spectroscopy / Weber, Verena. - (2014 Jan 30).
File in questo prodotto:
File Dimensione Formato  
Weber_Verena_tesi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 24.7 MB
Formato Adobe PDF
24.7 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3423838
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact