Measurement of the properties of magnetic nanoparticles is mandatory for their application and usually this is accomplished using magnetometers, like SQUIDs or VSMs. However, these techniques require amounts of materials that are not always available and do not allow exploration of new syntheses with low production. The tiny quantity of nanoparticles obtained by laser ablation of strontium ferrite necessitated the characterization of their magnetic properties using an alternative technique, optically detected magnetophoresis, which exploits the motion of nanoparticles in a fluid under a magnetic field gradient. Time dependent optical extinction of a colloidal solution of magnetic nanoparticles can be used for recording the collective motion of the nanoparticles in a fluid. The optical extinction of nanoparticles, with absorption and scattering contributions, depends on the particle material and on their morphologies. We report a new implementation of a magnetophoretic model with the extinction properties of nanoparticles calculated using the Boundary Element Method. The model is applied to estimate the magnetic properties of a challenging sample of mixed ferrite nanoparticles. The results show that, especially for polydisperse samples, the explicit consideration of the size dependent extinction properties of the nanoparticles is needed to characterize magnetic nanoparticles by optically detected magnetophoresis. The motion of magnetic nanoparticles in a fluid, exploited in many applications, is provided with an appropriate description using the present approach.

Synthesis of magnetic nanoparticles by laser ablation of strontium ferrite under water and their characterization by optically detected magnetophoresis supported by BEM calculations

Piotto V.;Litti L.;Martucci A.;Meneghetti M.
2022

Abstract

Measurement of the properties of magnetic nanoparticles is mandatory for their application and usually this is accomplished using magnetometers, like SQUIDs or VSMs. However, these techniques require amounts of materials that are not always available and do not allow exploration of new syntheses with low production. The tiny quantity of nanoparticles obtained by laser ablation of strontium ferrite necessitated the characterization of their magnetic properties using an alternative technique, optically detected magnetophoresis, which exploits the motion of nanoparticles in a fluid under a magnetic field gradient. Time dependent optical extinction of a colloidal solution of magnetic nanoparticles can be used for recording the collective motion of the nanoparticles in a fluid. The optical extinction of nanoparticles, with absorption and scattering contributions, depends on the particle material and on their morphologies. We report a new implementation of a magnetophoretic model with the extinction properties of nanoparticles calculated using the Boundary Element Method. The model is applied to estimate the magnetic properties of a challenging sample of mixed ferrite nanoparticles. The results show that, especially for polydisperse samples, the explicit consideration of the size dependent extinction properties of the nanoparticles is needed to characterize magnetic nanoparticles by optically detected magnetophoresis. The motion of magnetic nanoparticles in a fluid, exploited in many applications, is provided with an appropriate description using the present approach.
File in questo prodotto:
File Dimensione Formato  
d1tc04796e.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.56 MB
Formato Adobe PDF
2.56 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3443464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact