Data assimilation applications in integrated surface-subsurface hydrological models (ISSHMs) are generally limited to scales ranging from the hillslope to local or meso-scale catchments. This is because ISSHMs resolve hydrological processes in detail and in a physics-based fashion and therefore typically require intensive computational efforts and rely on ground-based observations with a small spatial support. At the other end of the spectrum, there is a vast body of literature on remote sensing data assimilation for land surface models (LSMs) at the continental or even global scale. In LSMs, some hydrological processes are usually represented with a coarse resolution and in empirical ways, especially groundwater lateral flows, which may be very important and yet often neglected. Starting from the review of some recent progress in data assimilation for physics-based hydrological models at multiple scales, we stress the need to find a common ground between ISSHMs and LSMs and suggest possible ways forward to advance the use of data assimilation in integrated hydrological models.

Recent advances and opportunities in data assimilation for physics-based hydrological modeling

Camporese, M
;
2022

Abstract

Data assimilation applications in integrated surface-subsurface hydrological models (ISSHMs) are generally limited to scales ranging from the hillslope to local or meso-scale catchments. This is because ISSHMs resolve hydrological processes in detail and in a physics-based fashion and therefore typically require intensive computational efforts and rely on ground-based observations with a small spatial support. At the other end of the spectrum, there is a vast body of literature on remote sensing data assimilation for land surface models (LSMs) at the continental or even global scale. In LSMs, some hydrological processes are usually represented with a coarse resolution and in empirical ways, especially groundwater lateral flows, which may be very important and yet often neglected. Starting from the review of some recent progress in data assimilation for physics-based hydrological models at multiple scales, we stress the need to find a common ground between ISSHMs and LSMs and suggest possible ways forward to advance the use of data assimilation in integrated hydrological models.
2022
File in questo prodotto:
File Dimensione Formato  
frwa-04-948832.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 425.33 kB
Formato Adobe PDF
425.33 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3454743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact