The energy sustainability of multi-access edge computing (MEC) platforms is here addressed by developing Energy-Aware job Scheduling at the Edge (EASE), a computing resource scheduler for edge servers co-powered by renewable energy resources and the power grid. The scenario under study involves the optimal allocation and migration of time-sensitive computing tasks in a resource-constrained internet of vehicles (IoV) context. This is achieved by tackling, as the main objective, the minimization of the carbon footprint of the edge network, whilst delivering adequate quality of service (QoS) to the end users (e.g., meeting task execution deadlines). EASE integrates i) a centralized optimization step, solved through model predictive control (MPC), to manage the renewable energy that is locally collected at the edge servers and their local computing resources, estimating their future availability, and ii) a distributed consensus step, solved via dual ascent in closed form, to reach agreement on service migrations. EASE is compared with four existing migration strategies. Quantitative results demonstrate its greater energy efficiency, which often gets close to complete carbon neutrality, while also improving the QoS.
EASE: Energy-Aware Job Scheduling for Vehicular Edge Networks With Renewable Energy Resources
Perin, Giovanni
;Meneghello, Francesca;Carli, Ruggero;Schenato, Luca;Rossi, Michele
2023
Abstract
The energy sustainability of multi-access edge computing (MEC) platforms is here addressed by developing Energy-Aware job Scheduling at the Edge (EASE), a computing resource scheduler for edge servers co-powered by renewable energy resources and the power grid. The scenario under study involves the optimal allocation and migration of time-sensitive computing tasks in a resource-constrained internet of vehicles (IoV) context. This is achieved by tackling, as the main objective, the minimization of the carbon footprint of the edge network, whilst delivering adequate quality of service (QoS) to the end users (e.g., meeting task execution deadlines). EASE integrates i) a centralized optimization step, solved through model predictive control (MPC), to manage the renewable energy that is locally collected at the edge servers and their local computing resources, estimating their future availability, and ii) a distributed consensus step, solved via dual ascent in closed form, to reach agreement on service migrations. EASE is compared with four existing migration strategies. Quantitative results demonstrate its greater energy efficiency, which often gets close to complete carbon neutrality, while also improving the QoS.File | Dimensione | Formato | |
---|---|---|---|
EASE_Energy-Aware_Job_Scheduling_for_Vehicular_Edge_Networks_With_Renewable_Energy_Resources.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
2.19 MB
Formato
Adobe PDF
|
2.19 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.