The energy sustainability of multi-access edge computing (MEC) platforms is here addressed by developing Energy-Aware job Scheduling at the Edge (EASE), a computing resource scheduler for edge servers co-powered by renewable energy resources and the power grid. The scenario under study involves the optimal allocation and migration of time-sensitive computing tasks in a resource-constrained internet of vehicles (IoV) context. This is achieved by tackling, as the main objective, the minimization of the carbon footprint of the edge network, whilst delivering adequate quality of service (QoS) to the end users (e.g., meeting task execution deadlines). EASE integrates i) a centralized optimization step, solved through model predictive control (MPC), to manage the renewable energy that is locally collected at the edge servers and their local computing resources, estimating their future availability, and ii) a distributed consensus step, solved via dual ascent in closed form, to reach agreement on service migrations. EASE is compared with four existing migration strategies. Quantitative results demonstrate its greater energy efficiency, which often gets close to complete carbon neutrality, while also improving the QoS.

EASE: Energy-Aware Job Scheduling for Vehicular Edge Networks With Renewable Energy Resources

Perin, Giovanni
;
Meneghello, Francesca;Carli, Ruggero;Schenato, Luca;Rossi, Michele
2023

Abstract

The energy sustainability of multi-access edge computing (MEC) platforms is here addressed by developing Energy-Aware job Scheduling at the Edge (EASE), a computing resource scheduler for edge servers co-powered by renewable energy resources and the power grid. The scenario under study involves the optimal allocation and migration of time-sensitive computing tasks in a resource-constrained internet of vehicles (IoV) context. This is achieved by tackling, as the main objective, the minimization of the carbon footprint of the edge network, whilst delivering adequate quality of service (QoS) to the end users (e.g., meeting task execution deadlines). EASE integrates i) a centralized optimization step, solved through model predictive control (MPC), to manage the renewable energy that is locally collected at the edge servers and their local computing resources, estimating their future availability, and ii) a distributed consensus step, solved via dual ascent in closed form, to reach agreement on service migrations. EASE is compared with four existing migration strategies. Quantitative results demonstrate its greater energy efficiency, which often gets close to complete carbon neutrality, while also improving the QoS.
File in questo prodotto:
File Dimensione Formato  
EASE_Energy-Aware_Job_Scheduling_for_Vehicular_Edge_Networks_With_Renewable_Energy_Resources.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3454751
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact