This paper presents a system for online learning of human classifiers by mobile service robots using 3D LiDAR sensors, and its experimental evaluation in a large indoor public space. The learning framework requires a minimal set of labelled samples (e.g. one or several samples) to initialise a classifier. The classifier is then retrained iteratively during operation of the robot. New training samples are generated automatically using multi-target tracking and a pair of “experts” to estimate false negatives and false positives. Both classification and tracking utilise an efficient real-time clustering algorithm for segmentation of 3D point cloud data. We also introduce a new feature to improve human classification in sparse, long-range point clouds. We provide an extensive evaluation of our the framework using a 3D LiDAR dataset of people moving in a large indoor public space, which is made available to the research community. The experiments demonstrate the influence of the system comp...

Online learning for 3D LiDAR-based human detection: experimental analysis of point cloud clustering and classification methods

Bellotto N.
2020

Abstract

This paper presents a system for online learning of human classifiers by mobile service robots using 3D LiDAR sensors, and its experimental evaluation in a large indoor public space. The learning framework requires a minimal set of labelled samples (e.g. one or several samples) to initialise a classifier. The classifier is then retrained iteratively during operation of the robot. New training samples are generated automatically using multi-target tracking and a pair of “experts” to estimate false negatives and false positives. Both classification and tracking utilise an efficient real-time clustering algorithm for segmentation of 3D point cloud data. We also introduce a new feature to improve human classification in sparse, long-range point clouds. We provide an extensive evaluation of our the framework using a 3D LiDAR dataset of people moving in a large indoor public space, which is made available to the research community. The experiments demonstrate the influence of the system comp...
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3455204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 77
  • OpenAlex ND
social impact