Three polyazamacrocyclic ligands, i.e. 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S) and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S), were considered as potential chelators for the medically relevant copper radioisotopes. The ligands have been synthesized through facile, single-step reactions, and their acidity constants have been measured in aqueous solution at 25 °C. The kinetic, thermodynamic, electrochemical and structural properties of their Cu2+ and Cu+ complexes were investigated in aqueous solution at 25 °C using spectroscopic (UV-Visible, EPR, NMR) and electrochemical techniques (pH-potentiometric titrations, cyclic voltammetry and electrolysis). TACD3S was demonstrated to be unable to stabilize Cu2+, whereas for TRI4S and TE4S the formation of stable monocupric (CuL2+) and monocuprous (CuL+) complexes was detected. TRI4S coordinate...
When ring makes the difference: coordination properties of Cu2+/Cu+ complexes with sulfur-pendant polyazamacrocycles for radiopharmaceutical applications
Tosato M.;Franchi S.;Isse A. A.;Zanoni G.;Mancin F.;Pastore P.;Badocco D.;Asti M.;Di Marco V.
2022
Abstract
Three polyazamacrocyclic ligands, i.e. 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S) and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S), were considered as potential chelators for the medically relevant copper radioisotopes. The ligands have been synthesized through facile, single-step reactions, and their acidity constants have been measured in aqueous solution at 25 °C. The kinetic, thermodynamic, electrochemical and structural properties of their Cu2+ and Cu+ complexes were investigated in aqueous solution at 25 °C using spectroscopic (UV-Visible, EPR, NMR) and electrochemical techniques (pH-potentiometric titrations, cyclic voltammetry and electrolysis). TACD3S was demonstrated to be unable to stabilize Cu2+, whereas for TRI4S and TE4S the formation of stable monocupric (CuL2+) and monocuprous (CuL+) complexes was detected. TRI4S coordinate...File | Dimensione | Formato | |
---|---|---|---|
d2nj01032a.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.