Metric k-center clustering is a fundamental unsupervised learning primitive. Although widely used, this primitive is heavily affected by noise in the data, so a more sensible variant seeks for the best solution that disregards a given number z of points of the dataset, which are called outliers. We provide efficient algorithms for this important variant in the streaming model under the sliding window setting, where, at each time step, the dataset to be clustered is the window W of the most recent data items. For general metric spaces, our algorithms achieve O1 approximation and, remarkably, require a working memory linear in k+z and only logarithmic in |W|. For spaces of bounded doubling dimension, the approximation can be made arbitrarily close to 3. For these latter spaces, we show, as a by-product, how to estimate the effective diameter of the window W, which is a measure of the spread of the window points, disregarding a given fraction of noisy distances. We also provide experimental evidence of the practical viability of the improved clustering and diameter estimation algorithms.

k-Center Clustering with Outliers in Sliding Windows

Paolo Pellizzoni
;
Andrea Pietracaprina
;
Geppino Pucci
2022

Abstract

Metric k-center clustering is a fundamental unsupervised learning primitive. Although widely used, this primitive is heavily affected by noise in the data, so a more sensible variant seeks for the best solution that disregards a given number z of points of the dataset, which are called outliers. We provide efficient algorithms for this important variant in the streaming model under the sliding window setting, where, at each time step, the dataset to be clustered is the window W of the most recent data items. For general metric spaces, our algorithms achieve O1 approximation and, remarkably, require a working memory linear in k+z and only logarithmic in |W|. For spaces of bounded doubling dimension, the approximation can be made arbitrarily close to 3. For these latter spaces, we show, as a by-product, how to estimate the effective diameter of the window W, which is a measure of the spread of the window points, disregarding a given fraction of noisy distances. We also provide experimental evidence of the practical viability of the improved clustering and diameter estimation algorithms.
2022
File in questo prodotto:
File Dimensione Formato  
algorithms-15-00052-v2.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 482.38 kB
Formato Adobe PDF
482.38 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3456477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact