Structure-from-Motion (SfM) photogrammetry is increasingly employed in geomorpho-logical applications for change detection, but repeatability and reproducibility of this methodology are still insufficiently documented. This work aims to evaluate the influence of different survey acquisition and processing conditions, including the camera used for image collection, the number of Ground Control Points (GCPs) employed during Bundle Adjustment, GCP coordinate precision and Unmanned Aerial Vehicle flight mode. The investigation was carried out over three fluvial study areas characterized by distinct morphology, performing multiple flights consecutively and assessing possible differences among the resulting 3D models. We evaluated both residuals on check points and discrepancies between dense point clouds. Analyzing these metrics, we noticed high repeatability (Root Mean Square of signed cloud-to-cloud distances less than 2.1 cm) for surveys carried out under the same conditions. By varying the camera used, instead, contrasting results were obtained that appear to depend on the study site characteristics. In particular, lower reproducibility was highlighted for the surveys involving an area characterized by flat topography and homogeneous texturing. Moreover, this study confirms the importance of the number of GCPs entering in the processing workflow, with different impact depending on the camera used for the survey.

Assessing repeatability and reproducibility of structure-from-motion photogrammetry for 3d terrain mapping of riverbeds

De Marco J.
;
Cucchiaro S.;Cazorzi F.
2021

Abstract

Structure-from-Motion (SfM) photogrammetry is increasingly employed in geomorpho-logical applications for change detection, but repeatability and reproducibility of this methodology are still insufficiently documented. This work aims to evaluate the influence of different survey acquisition and processing conditions, including the camera used for image collection, the number of Ground Control Points (GCPs) employed during Bundle Adjustment, GCP coordinate precision and Unmanned Aerial Vehicle flight mode. The investigation was carried out over three fluvial study areas characterized by distinct morphology, performing multiple flights consecutively and assessing possible differences among the resulting 3D models. We evaluated both residuals on check points and discrepancies between dense point clouds. Analyzing these metrics, we noticed high repeatability (Root Mean Square of signed cloud-to-cloud distances less than 2.1 cm) for surveys carried out under the same conditions. By varying the camera used, instead, contrasting results were obtained that appear to depend on the study site characteristics. In particular, lower reproducibility was highlighted for the surveys involving an area characterized by flat topography and homogeneous texturing. Moreover, this study confirms the importance of the number of GCPs entering in the processing workflow, with different impact depending on the camera used for the survey.
2021
File in questo prodotto:
File Dimensione Formato  
De_Marco et al 2021 remotesensing-13-02572_compressed.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3457854
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact