Simple Summary Malignant melanoma is the most lethal form of skin cancer. While new therapeutic approaches have improved survival in patients with metastatic melanoma, responses are rarely sustained due to the high degree of heterogeneity at the inter- and intra-metastatic levels. The development of reliable biomarkers to monitor therapeutic response and disease progression is critical. While attention has been focused on dissecting the molecular basis responsible for treatment resistance, it is clear that epigenetic changes warrant further in-depth investigation. Indeed, many aberrantly methylated genes play a role in cell cycle control, apoptosis, and cell invasion, as well as in melanoma progression. Longitudinal monitoring of DNA methylation via liquid biopsy can provide real-time information on the behavior and stage of melanoma. Malignant melanoma is the most serious, life-threatening form of all dermatologic diseases, with a poor prognosis in the presence of metastases and advanced disease. Despite recent advances in targeted therapy and immunotherapy, there is still a critical need for a better understanding of the fundamental mechanisms behind melanoma progression and resistance onset. Recent advances in genome-wide methylation methods have revealed that aberrant changes in the pattern of DNA methylation play an important role in many aspects of cancer progression, including cell proliferation and migration, evasion of cell death, invasion, and metastasization. The purpose of the current review was to gather evidence regarding the usefulness of DNA methylation tracking in liquid biopsy as a potential biomarker in melanoma. We investigated the key genes and signal transduction pathways that have been found to be altered epigenetically in melanoma. We then highlighted the circulating tumor components present in blood, including circulating melanoma cells (CMC), circulating tumor DNA (ctDNA), and tumor-derived extracellular vesicles (EVs), as a valuable source for identifying relevant aberrations in DNA methylation. Finally, we focused on DNA methylation signatures as a marker for tracking response to therapy and resistance, thus facilitating personalized medicine and decision-making in the treatment of melanoma patients.

Methylation Markers in Cutaneous Melanoma: Unravelling the Potential Utility of Their Tracking by Liquid Biopsy

Catoni, Cristina;Rosato, Antonio
;
Facchinetti, Antonella;Scaini, Maria Chiara
2021

Abstract

Simple Summary Malignant melanoma is the most lethal form of skin cancer. While new therapeutic approaches have improved survival in patients with metastatic melanoma, responses are rarely sustained due to the high degree of heterogeneity at the inter- and intra-metastatic levels. The development of reliable biomarkers to monitor therapeutic response and disease progression is critical. While attention has been focused on dissecting the molecular basis responsible for treatment resistance, it is clear that epigenetic changes warrant further in-depth investigation. Indeed, many aberrantly methylated genes play a role in cell cycle control, apoptosis, and cell invasion, as well as in melanoma progression. Longitudinal monitoring of DNA methylation via liquid biopsy can provide real-time information on the behavior and stage of melanoma. Malignant melanoma is the most serious, life-threatening form of all dermatologic diseases, with a poor prognosis in the presence of metastases and advanced disease. Despite recent advances in targeted therapy and immunotherapy, there is still a critical need for a better understanding of the fundamental mechanisms behind melanoma progression and resistance onset. Recent advances in genome-wide methylation methods have revealed that aberrant changes in the pattern of DNA methylation play an important role in many aspects of cancer progression, including cell proliferation and migration, evasion of cell death, invasion, and metastasization. The purpose of the current review was to gather evidence regarding the usefulness of DNA methylation tracking in liquid biopsy as a potential biomarker in melanoma. We investigated the key genes and signal transduction pathways that have been found to be altered epigenetically in melanoma. We then highlighted the circulating tumor components present in blood, including circulating melanoma cells (CMC), circulating tumor DNA (ctDNA), and tumor-derived extracellular vesicles (EVs), as a valuable source for identifying relevant aberrations in DNA methylation. Finally, we focused on DNA methylation signatures as a marker for tracking response to therapy and resistance, thus facilitating personalized medicine and decision-making in the treatment of melanoma patients.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3459732
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact