Recently, increased attention has been devoted to intermittent and ephemeral streams (IRES) due to the recognition of their importance for ecology, hydrology, and biogeochemistry. However, IRES dynamics still demand further research, and traditional monitoring approaches present several limitations in continuously and accurately capturing river network expansion/contraction. Optical-based approaches have shown promise in noninvasively estimating the water level in intermittent streams: a simple setup made up of a wildlife camera and a reference white pole led to estimations within 2cm of accuracy in severe hydrometeorological conditions. In this work, we investigate whether the shortcomings imposed by adverse illumination can be partially mitigated by modifying this simple stage-cam setup. Namely, we estimate the image-based water level by using both the pole and a larger white bar. Further, we compare such results to those obtained with larger bars painted in the red, green, and blue primary colors. Our findings show that using larger white bars also increases reflections and, therefore, the accuracy in the estimation of the water level is not necessarily enhanced. Likewise, experimenting with colored bars does not significantly improve image-based estimations of the stage. Therefore, this work confirms that a simple stage-cam setup may be sufficient to monitor IRES dynamics, suggesting that future efforts may be rather focused on including filters and polarizers in the camera as well as on improving the performance of the image processing algorithm.

Assessing the Optimal Stage-Cam Target for Continuous Water Level Monitoring in Ephemeral Streams: Experimental Evidence

Noto, S;Botter, G;
2022

Abstract

Recently, increased attention has been devoted to intermittent and ephemeral streams (IRES) due to the recognition of their importance for ecology, hydrology, and biogeochemistry. However, IRES dynamics still demand further research, and traditional monitoring approaches present several limitations in continuously and accurately capturing river network expansion/contraction. Optical-based approaches have shown promise in noninvasively estimating the water level in intermittent streams: a simple setup made up of a wildlife camera and a reference white pole led to estimations within 2cm of accuracy in severe hydrometeorological conditions. In this work, we investigate whether the shortcomings imposed by adverse illumination can be partially mitigated by modifying this simple stage-cam setup. Namely, we estimate the image-based water level by using both the pole and a larger white bar. Further, we compare such results to those obtained with larger bars painted in the red, green, and blue primary colors. Our findings show that using larger white bars also increases reflections and, therefore, the accuracy in the estimation of the water level is not necessarily enhanced. Likewise, experimenting with colored bars does not significantly improve image-based estimations of the stage. Therefore, this work confirms that a simple stage-cam setup may be sufficient to monitor IRES dynamics, suggesting that future efforts may be rather focused on including filters and polarizers in the camera as well as on improving the performance of the image processing algorithm.
2022
File in questo prodotto:
File Dimensione Formato  
Tauro_et_al_2022_Assessing_the_Optimal_Stage-Cam_Target_for_Continuous_Water_Level_Monitoring_in_Ephemeral_Streams_Experimental_Evidence.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 11.54 MB
Formato Adobe PDF
11.54 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3469029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact