: Silver linden (Tilia tomentosa Moench, TtM) flowers possess several health-promoting properties, especially at the neurological level, such as intestinal relaxation activity associated with specific flavonols, particularly quercetin and kaempferol derivatives. However, such molecules are susceptible to degradation upon different triggers like heat, light and extreme pH values. To overcome the scarce stability of TtM flowers bioactive molecules and make them suitable for developing functional food and supplements, we applied microencapsulation. Spray-drying microencapsulation of TtM flowers extract was performed using three starch-derived wall materials: maltodextrin 12 DE (MD12) and 19 DE (MD19), and OSA-modified starch (OSA-S). The stability of total phenols, flavanols, and antioxidant capacity was monitored for 70 days under accelerated stress conditions (40 °C/70% RH) by HPLC and spectrophotometric methods, and the intestinal contractile activity was tested in a murine model. In comparison to MD12 and MD19, OSA-S stood out for the higher encapsulation efficiency of quercetin and kaempferol glycosides (+ 36-47% compared to MD12 and + 18-24% compared to MD19) and stability thereof (half-life on average + 30% compared to MD12 and + 51% compared to MD19). The intestinal contractile activity of OAS-S powders resulted comparable to the original extract, indicating that flavonols were biologically active and accessible. Our results underly the potential advantages of OSA-S encapsulated formulation as a functional ingredient for the development of nutraceutical products.

Spray-drying Microencapsulation of an Extract from Tilia tomentosa Moench Flowers: Physicochemical Characterization and in Vitro Intestinal Activity

Mainente, Federica;Piovan, Anna;Cerantola, Silvia;Faggin, Sofia;Giron, Maria Cecilia;Filippini, Raffaella;
2022

Abstract

: Silver linden (Tilia tomentosa Moench, TtM) flowers possess several health-promoting properties, especially at the neurological level, such as intestinal relaxation activity associated with specific flavonols, particularly quercetin and kaempferol derivatives. However, such molecules are susceptible to degradation upon different triggers like heat, light and extreme pH values. To overcome the scarce stability of TtM flowers bioactive molecules and make them suitable for developing functional food and supplements, we applied microencapsulation. Spray-drying microencapsulation of TtM flowers extract was performed using three starch-derived wall materials: maltodextrin 12 DE (MD12) and 19 DE (MD19), and OSA-modified starch (OSA-S). The stability of total phenols, flavanols, and antioxidant capacity was monitored for 70 days under accelerated stress conditions (40 °C/70% RH) by HPLC and spectrophotometric methods, and the intestinal contractile activity was tested in a murine model. In comparison to MD12 and MD19, OSA-S stood out for the higher encapsulation efficiency of quercetin and kaempferol glycosides (+ 36-47% compared to MD12 and + 18-24% compared to MD19) and stability thereof (half-life on average + 30% compared to MD12 and + 51% compared to MD19). The intestinal contractile activity of OAS-S powders resulted comparable to the original extract, indicating that flavonols were biologically active and accessible. Our results underly the potential advantages of OSA-S encapsulated formulation as a functional ingredient for the development of nutraceutical products.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3470316
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact