In this article, we derive fast and robust preconditioned iterative methods for the all-at-once linear systems arising upon discretization of time-dependent PDEs. The discretization we employ is based on a Runge--Kutta method in time, for which the development of robust solvers is an emerging research area in the literature of numerical methods for time-dependent PDEs. By making use of classical theory of block matrices, one is able to derive a preconditioner for the systems considered. An approximate inverse of the preconditioner so derived consists in a fixed number of linear solves for the system of the stages of the method. We thus propose a preconditioner for the latter system based on a singular value decomposition (SVD) of the (real) Runge--Kutta matrix $A_{\mathrm{RK}} = U \Sigma V^\top$. Supposing $A_{\mathrm{RK}}$ is invertible, we prove that the spectrum of the system for the stages preconditioned by our SVD-based preconditioner is contained within the right-half of the unit circle, under suitable assumptions on the matrix $U^\top V$ (which is well defined due to the polar decomposition of $A_{\mathrm{RK}}$). We show the numerical efficiency of our SVD-based preconditioner by solving the system of the stages arising from the discretization of the heat equation and the Stokes equations, with sequential time-stepping. Finally, we provide numerical results of the all-at-once approach for both problems.

Fast Iterative Solver for the All-at-Once Runge--Kutta Discretization

Luca Bergamaschi;
2023

Abstract

In this article, we derive fast and robust preconditioned iterative methods for the all-at-once linear systems arising upon discretization of time-dependent PDEs. The discretization we employ is based on a Runge--Kutta method in time, for which the development of robust solvers is an emerging research area in the literature of numerical methods for time-dependent PDEs. By making use of classical theory of block matrices, one is able to derive a preconditioner for the systems considered. An approximate inverse of the preconditioner so derived consists in a fixed number of linear solves for the system of the stages of the method. We thus propose a preconditioner for the latter system based on a singular value decomposition (SVD) of the (real) Runge--Kutta matrix $A_{\mathrm{RK}} = U \Sigma V^\top$. Supposing $A_{\mathrm{RK}}$ is invertible, we prove that the spectrum of the system for the stages preconditioned by our SVD-based preconditioner is contained within the right-half of the unit circle, under suitable assumptions on the matrix $U^\top V$ (which is well defined due to the polar decomposition of $A_{\mathrm{RK}}$). We show the numerical efficiency of our SVD-based preconditioner by solving the system of the stages arising from the discretization of the heat equation and the Stokes equations, with sequential time-stepping. Finally, we provide numerical results of the all-at-once approach for both problems.
2023
File in questo prodotto:
File Dimensione Formato  
2303.02090-1.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 880.6 kB
Formato Adobe PDF
880.6 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3471094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact