The only therapy for coeliac disease patients is to completely avoid foods containing gluten, a protein complex common in several small-grain cereals. However, many alternative gluten-free foods available on the market present nutritional deficiencies. Therefore, the aim of this research was to evaluate the composition and the antioxidant properties of gluten-free pasta enriched with 10% or 15% of tomato waste or linseed meal, two food industry by-products. The traits analysed were protein, lipid, ash and fibre content, heat damage, tocols, carotenoids and phenolics composition (by HPLC), antioxidant capacity, and pasta fracturability. The enriched pastas contained more fibre and lipids than the control, while the protein and ash values were similar. The addition of tomato and linseed waste improved tocols concentration but had no effect on carotenoids content. The free soluble polyphenols increase was similar for both by-products and proportional to the enrichment percentage, while the bound insoluble polyphenols were higher in linseed-enriched pastas. The samples with linseed meal showed the greatest antioxidant capacity and, at 10% addition, the highest fracturability value. In conclusion, the addition of tomato and linseed by-products significantly increases the presence of bioactive compounds (particularly polyphenols), improving the nutritional value of gluten-free pasta.

Antioxidant Properties of Gluten-Free Pasta Enriched with Vegetable By-Products

Gabriella Pasini;
2022

Abstract

The only therapy for coeliac disease patients is to completely avoid foods containing gluten, a protein complex common in several small-grain cereals. However, many alternative gluten-free foods available on the market present nutritional deficiencies. Therefore, the aim of this research was to evaluate the composition and the antioxidant properties of gluten-free pasta enriched with 10% or 15% of tomato waste or linseed meal, two food industry by-products. The traits analysed were protein, lipid, ash and fibre content, heat damage, tocols, carotenoids and phenolics composition (by HPLC), antioxidant capacity, and pasta fracturability. The enriched pastas contained more fibre and lipids than the control, while the protein and ash values were similar. The addition of tomato and linseed waste improved tocols concentration but had no effect on carotenoids content. The free soluble polyphenols increase was similar for both by-products and proportional to the enrichment percentage, while the bound insoluble polyphenols were higher in linseed-enriched pastas. The samples with linseed meal showed the greatest antioxidant capacity and, at 10% addition, the highest fracturability value. In conclusion, the addition of tomato and linseed by-products significantly increases the presence of bioactive compounds (particularly polyphenols), improving the nutritional value of gluten-free pasta.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3472898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact